
21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 1

Framework,

A framework, in the context of software development, is a structured platform that provides a

foundation on which software developers can build applications for a specific environment. It

includes a collection of predefined classes and functions that facilitate the development process

by handling common and repetitive tasks, allowing developers to focus on the unique aspects

of their applications.

Key Characteristics of a Framework

• Reusability: Provides reusable pieces of code that handle common functionalities.

• Modularity: Organizes code into modules or components, making it easier to manage,

maintain, and scale applications.

• Inversion of Control (IoC): Unlike in libraries where the application code calls the

library, in a framework, the framework calls the application code. This is known as the

"Hollywood Principle" – "Don't call us, we'll call you."

• Extensibility: Allows developers to extend and customize its components to suit

specific needs.

• Convention over Configuration: Promotes best practices and standard conventions to

reduce the amount of configuration and boilerplate code required.

Web framework

A web framework, often referred to as a web application framework, is a software framework

designed to support the development of web applications including web services, web

resources, and web APIs. By providing a standard way to build and deploy web applications,

web frameworks streamline the process and handle common tasks so developers can focus on

their application's specific functionality.

FRONTEND (CLIENT-SIDE) FRAMEWORKS

• Mainly deal with the UI (user interface) and customer-side interactivity that further assists

in front end testing.

• Operate within the customer’s browser and are responsible for managing user interactions,

rendering content, and boosting the overall user experience.

• Crucial to generating dynamic, responsive, and visually alluring web apps.

• Prime framework examples include Angular, Vue.js, React, and Ember.js.

BACKEND (SERVER-SIDE) FRAMEWORKS

• Backend frameworks are primarily designed to focus on the server-side logic of web apps.

• These frameworks manage server operations, communicate with databases, and process

requests from the user side.

• They are responsible for the robust security, functionality, and data management of web

apps. Notable backend frameworks examples include ASP.NET., Ruby on Rails,

Express.js, Django, and Spring Boot.

• Working of HTTP

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 2

Working of HTTP

The image illustrates the basic process of communication between a web browser and a web server

using the HTTP (Hypertext Transfer Protocol). Here’s a step-by-step explanation of how this process

works:

1.. Browser Initiates a Request

User Action: The user types a URL into the browser’s address bar or clicks on a link.

Browser Sends HTTP Request: The browser creates an HTTP request. This request includes

HTTP headers, which contain metadata about the request (e.g., type of request, content type,

user agent).

2. HTTP Request Sent to Server

HTTP Request: This request is sent from the browser to the web server via the Internet. The

request specifies what resource (like a web page or API endpoint) the browser is requesting.

3. Server Processes the Request

Server Receives Request: The web server receives the HTTP request.

Server Processing: The server processes the request. This might involve querying a database,

processing data, or performing other server-side operations to prepare the response.

4. Server Sends Response

HTTP Response: After processing the request, the server sends back an HTTP response. This

response includes HTTP headers (providing metadata about the response) and the content (such

as HTML, JSON, or other data).

5. Browser Receives Response

Browser Processes Response: The browser receives the HTTP response from the server.

Example Workflow

HTTP Request:

Browser sends a GET request to retrieve a webpage. Headers might include User-Agent,

Accept, Host, etc.

Server Processing: Server routes the request to the appropriate handler. The handler might

query a database or perform logic to generate the webpage content.

HTTP Response:

Server sends back the webpage content in the response body. Headers might include Content-

Type, Content-Length, Set-Cookie, etc.

Browser Rendering:

Browser receives the HTML content and renders the webpage. If there are linked resources

(CSS, JavaScript, images), the browser will make additional HTTP requests for those

resources.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 3

Web development framework

The image illustrates the sequence of HTTP requests and responses between a browser and a server

to render a web page with an image. Here's a brief explanation of each step:

1. Initial HTTP Request for HTML Document

Browser Action: The browser sends an HTTP GET request to the server for the HTML document at

https://studies.cs.helsinki.fi/exampleapp/.

Server Response: The server responds with the requested HTML document.

2. Processing HTML Document

Browser Action: The browser processes the received HTML document. It parses the HTML content

to understand the structure of the webpage.

3. HTTP Request for Image

Browser Action: While parsing the HTML, the browser encounters a reference to an image

(kuva.png). It sends another HTTP GET request to the server for this image at

https://studies.cs.helsinki.fi/exampleapp/kuva.png.

Server Response: The server responds with the image file (kuva.png).

4. Rendering the Page

Browser Action: The browser receives the image file and incorporates it into the HTML document.

The browser then renders the complete webpage, displaying both the text and the image.

Summary

First Request: The browser requests and receives the HTML document.

Second Request: The browser requests and receives the image referenced in the HTML.

Result: The browser renders the complete webpage, which includes the image.

This sequence demonstrates the process of loading and rendering a web page with multiple

resources (HTML and images), showcasing how the browser makes separate requests for each

resource and assembles them to display the final page.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 4

MVC Design Pattern

The Model-View-Controller (MVC) design pattern is a widely used architectural pattern for

developing user interfaces in software applications. It divides the application into three

interconnected components: Model, View, and Controller. Let's delve into the relationship and

details of each component within the MVC architecture:

Model:

Responsibility: The Model component represents the application's data and business logic. It

encapsulates the data structure and logic for manipulating that data.

Characteristics:

• It does not depend on the user interface or presentation layer.

• It typically interacts with the database, file system, web services, or other data sources to

retrieve and manipulate data.

• It notifies the View component of any changes in the data (often through events or

observers).

Example: In a web application, the Model might consist of classes representing entities like

User, Product, or Order, along with logic for database operations like CRUD (Create, Read,

Update, Delete).

View:

Responsibility: The View component is responsible for presenting the data to the user and

gathering user input. It represents the user interface (UI) of the application.

Characteristics:

• It receives data from the Model and renders it in a format suitable for the user (e.g., HTML

for web applications, GUI elements for desktop applications).

• It does not contain business logic; its primary role is to display data and handle user

interactions.

• It may send user input (e.g., form submissions, button clicks) to the Controller for

processing.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 5

Example: In a web application, the View component comprises HTML templates, CSS

stylesheets, and client-side scripts (e.g., JavaScript) responsible for rendering dynamic content

and handling user interactions.

Controller:

Responsibility: The Controller component acts as an intermediary between the Model and the

View. It receives user input from the View, processes it (possibly involving interactions with

the Model), and updates the View accordingly.

Characteristics:

• It interprets user actions and translates them into operations on the Model.

• It updates the View based on changes in the Model and handles user interactions by

invoking appropriate actions.

• It typically contains application logic related to routing, request handling, and business

workflow orchestration.

Example: In a web application, the Controller component consists of server-side code (e.g.,

servlets, controllers in MVC frameworks like Spring MVC or Django) responsible for handling

HTTP requests, interacting with the Model to perform business operations, and selecting the

appropriate View to render.

Relationship(FLOW)

The Model component interacts with the View indirectly through the Controller. It notifies the

Controller of any changes in the data, which in turn updates the View.

The View component can send user input (e.g., form submissions, and button clicks) to the

Controller for processing.

The Controller component communicates with both the Model and the View. It retrieves data

from the Model, processes user input, and updates the View based on the changes in the Model.

Overall, the MVC pattern promotes the separation of concerns, making it easier to maintain,

test, and evolve software applications by decoupling the user interface, data, and application

logic.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 6

The timeline shows Django’s consistent development and improvement over time. Each version

brought new features, improvements, and support for newer versions of Python, ensuring that the

framework remains modern and capable of handling contemporary web development needs. The

introduction of Long-Term Support (LTS) releases provided stability and assurance to developers who

needed extended support for their projects. Django's evolution highlights its commitment to staying

relevant and useful in the rapidly changing landscape of web development.

July 2003

Development Begins: This marks the initial phase where Django's development started. The

framework was developed by Adrian Holovaty and Simon Willison while working at the Lawrence

Journal-World newspaper. They needed a web framework to quickly develop and deploy web

applications.

July 2005

First Public Release: Django is released to the public. This is a significant milestone as it marks the

point where Django became available for use by the wider developer community. It allowed

developers to build web applications rapidly using the principles and tools provided by the

framework.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 7

September 2008

Version 1.0: The release of Django version 1.0 represents the first major stable release. This version

included a stable API and backward compatibility promises, making it a solid foundation for

developers to build upon.

July 2009

Version 1.1: This version introduced several improvements and new features, including the addition

of the aggregation API for querying the database.

May 2010

Version 1.2: Django 1.2 brought multiple improvements, such as support for multiple database

connections and a revamped permission system.

March 2011

Version 1.3: This version included support for class-based views, static files handling, and other

enhancements aimed at making development easier and more flexible.

March 2012

Version 1.4: Django 1.4 introduced the concept of time zone-aware datetime objects, improving the

handling of time-related data in a global context.

February 2013

Version 1.5: One of the major features of Django 1.5 was the introduction of support for Python 3.0,

which allowed developers to use the newer version of Python with Django.

November 2013

Version 1.6: This release continued the trend of improving and adding new features, including

improvements to transaction management and other core functionalities.

September 2014

Version 1.7: Django 1.7 brought significant changes, including a new system for managing database

migrations. This made it easier to evolve the database schema over time.

April 2015

Version 1.8: This version was designated as a Long-Term Support (LTS) release, which meant it would

receive extended support and updates. It included a configurable template engine and other

enhancements.

December 2015

Version 1.9: Django 1.9 continued to add features and improvements, such as template-based

widgets and the ability to customize the validation of model fields more easily.

August 2016

Version 1.10: This version focused on improving the middleware system, making it more flexible and

easier to use.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 8

April 2017

Version 1.11: This was another Long-Term Support (LTS) release and the last version to support

Python 2.7. It included numerous improvements and features, ensuring stability and long-term

support for users still on Python 2.7.

December 2017

Version 2.0: Marking a major update, Django 2.0 dropped support for Python 2, requiring Python 3.4

or higher. This release focused on modernizing the framework and included many new features.

August 2018

Version 2.1: This version continued to build on the improvements of version 2.0, adding features like

window expressions in ORM queries and other enhancements.

April 2019

Version 2.2: Another Long-Term Support (LTS) release, version 2.2 brought further stability and new

features, ensuring long-term reliability for users needing extended support.

December 2019

Version 3.0: Django 3.0 marked another major release with significant updates, including support for

Python 3.6, 3.7, and 3.8. This version also introduced ASGI (Asynchronous Server Gateway Interface)

support, paving the way for asynchronous programming in Django.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 9

Working of Django URL Confs and Loose Coupling

In the context of web development, particularly with the Django framework, URLconfs (URL

configurations) and loose coupling are important concepts for maintaining clean, scalable,

and maintainable code.

URLconfs in Django

A URLconf in Django is a mapping between URL patterns and views. It is a mechanism to

route different URLs to their respective view functions or classes that handle the request and

return a response. This mapping is typically defined in a urls.py file within your Django

application. Here’s an example of a simple URLconf:

python

from django.urls import path

from . import views

urlpatterns = [

 path('home/', views.home, name='home'),

 path('about/', views.about, name='about'),

 path('contact/', views.contact, name='contact'),

]

In this example, three URL patterns (home/, about/, and contact/) are mapped to their

corresponding view functions (home, about, and contact).

Loose Coupling

Loose coupling is a design principle aimed at reducing the interdependencies between

different components of a system. When components are loosely coupled, changes in one

component have minimal impact on other components, leading to greater flexibility, easier

maintenance, and improved scalability. In the context of Django and URLconfs, loose

coupling can be achieved by:

1. *Separating Concerns*: Keep different functionalities in separate files and modules. For

example, views, models, and URL configurations should reside in their respective files

(views.py, models.py, urls.py).

2. *Reusability*: Make views and URL patterns reusable across different parts of the

application. For example, use Django's class-based views (CBVs) which are more modular

and can be easily extended or reused.

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 10

3. *Namespaces*: Use URL namespaces to group URL patterns in a modular way. This is

especially useful for large applications with multiple apps.

4. *Avoiding Tight Coupling with Views*: Instead of hardcoding URL patterns directly in

views, use the reverse() function and named URL patterns. This makes the URLs more

maintainable

Here’s an example demonstrating loose coupling principles:

1. *Defining URL patterns in urls.py:*

from django.urls import path

from . import views

app_name = 'myapp'

urlpatterns = [

 path('home/', views.HomeView.as_view(), name='home'),

 path('about/', views.AboutView.as_view(), name='about'),

 path('contact/', views.ContactView.as_view(), name='contact'),

]

2. *Using Class-Based Views for better modularity and reusability:*

from django.views.generic import TemplateView

class HomeView(TemplateView):

 template_name = 'home.html'

class AboutView(TemplateView):

 template_name = 'about.html'

class ContactView(TemplateView):

 template_name = 'contact.html'

3. *Reversing URLs in templates or views for better maintainability:*

Home

About

Contact

VIEWS

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 11

In Django, views are Python functions or classes that receive web requests and return web

responses. They encapsulate the logic for processing HTTP requests and generating appropriate

responses. Here are some details about views in Django along with examples:

Function-based Views (FBVs)

Function-based views are simple Python functions that take an HTTP request as input and

return an HTTP response.

They are defined in views.py file within Django apps.

an example of a function-based view:

from django.http import HttpResponse

def my_view(request):

Process the request

return HttpResponse("Hello, World!")

Explaination

from django.http import HttpResponse

Line 1: This imports the HttpResponse class from the django.http module. HttpResponse is a

class used to construct HTTP responses in Django.

def my_view(request):

Line 2: This defines a Python function named my view that takes a request object as its

argument. In Django, views are typically implemented as functions or class-based views. The

request object contains information about the incoming HTTP request.

Process the request

Line 3: This is a comment line indicating that the subsequent code processes the request. You

would typically put your logic for processing the request here.

return HttpResponse("Hello, World!")

Line 4: This line constructs an HttpResponse object with the content "Hello, World!". This

response will be sent back to the client who made the request. In this case, the response simply

contains the string "Hello, World!".

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 12

Class-based Views (CBVs)

Class-based views are views implemented as Python classes.They provide an object-oriented

way to define views, making it easier to reuse and organize code. Django provides various

generic class-based views for common tasks.

an example of a class-based view:

from django.views import View

from django.http import HttpResponse

class MyView(View):

def get(self, request):

Process GET request

return HttpResponse("Hello, World!")

This code snippet defines a class-based view (CBV) named MyView using Django's class-

based views framework. Here's a breakdown of each part:

from django.views import View

from django.http import HttpResponse

Line 1-2: These lines import the View class from django.views module and the HttpResponse

class from django.http module. View is a base class for all class-based views in Django, and

HttpResponse is a class used to construct HTTP responses.

class MyView(View):

Line 3: This line defines a new class named MyView that inherits from the View class. This

means that MyView is a subclass of View, and it inherits all the methods and attributes of the

View class.

def get(self, request):

Line 4: This line defines a method named get within the MyView class. In Django class-

based views, methods like get, post, put, etc., correspond to HTTP request methods. In this

case, get method handles HTTP GET requests.

Process GET request

Line 5: This is a comment indicating that the subsequent code processes the GET request.

This is where you would typically put your logic for handling the GET request.

return HttpResponse("Hello, World!")

Line 6: This line constructs an HttpResponse object with the content "Hello, World!". This

response will be sent back to the client who made the GET request. In other words, when a

GET request is made to the MyView, it will respond with "Hello, World!".

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 13

MAPPING URL TO VIEWS

Mapping URLs to views in Django involves defining URL patterns in the URL configuration

(urls.py) of your Django project or app. These URL patterns specify which views should be

invoked when a particular URL is accessed. Here's how to map URLs to views in Django:

Create a View Function or Class:

First, define a view function or class in your Django app's views.py file. This view will contain

the logic for handling the HTTP request and generating the HTTP response.

Example view function:

from django.http import HttpResponse

def my_view(request):

return HttpResponse("Hello, World!")

Example class-based view:

from django.views import View

from django.http import HttpResponse

class MyView(View):

def get(self, request):

return HttpResponse("Hello, World!")

Define URL Patterns:

Next, define URL patterns in your Django project's or app's urls.py file. Each URL pattern is a

mapping between a URL pattern (expressed as a regular expression) and a view function or

class.

Example URL configuration (urls.py):

from django.urls import path

from .views import my_view, MyView

urlpatterns = [

]

path('hello/', my_view, name='hello'),

path('hello-class/', MyView.as_view(), name='hello-class'),

21CS62 Full stack Development

DEPT.OF CSE,KLECET,CHIKODI MODULE 1 14

Include App URLs in Project URLS (if applicable):

If you're defining URLs in an app, make sure to include the app's URLS in the project's URL

configuration (urls.py). This is done using the include() function from django.urls.Example

project URL configuration (urls.py):

from django.urls import path, include

urlpatterns = [

path('myapp/', include('myapp.urls')),

Other URL patterns...

Access Views via URLs:

Once the URL patterns are defined, you can access the views by navigating to the

corresponding URLS in your web browser or by making HTTP requests to those URLS

programmatically.

For the view function my_view, you can access it at /hello/ URL.

For the class-based view MyView, you can access it at /hello-class/ URL.

By mapping URLs to views in this way, you can define the structure of your Django project's

URL routing and specify which views should handle incoming HTTP requests for different

URLs.

ERRORS IN DJANGO

1. 404 Page Not Found Error

2. Integrity Error

3. Database Error

4. Data Error

5. Syntax Error

6. Compile Error

