
Introduction to System Software

Module-1

1.1 What is System Software?

2

System Software consists of a variety of programs that supports the operation of a

computer. This software makes its possible for the user to focus on an application

without needing to know the detail of how the machine works internally.

Difference between system software & application software:

System Software Application Software

It is a program or group of programs written

for a computer system management.

It is a program or collection of programs

written to solve a particular problem.

These are developed by the manufacturers. These are developed by users.

System software control & manage the

hardware.

Application software uses the services of the

system software to interact with the hardware.

Development of system software is complex

task.

Development of application software is

relatively easier.

Ex: Operating System, Compilers, Assemblers,

Loaders, Linkers, Text editors etc.

MS-WORD, MS-EXCEL, Payroll

inventory system, Student management

system, Library Management System etc.

1.2 System Software v/s. Machine Architecture

3

 Machine Dependent

 The most important characteristic in which most system software differ from

application software is machine Dependency.

e.g. Assembler translate mnemonic instructions into machine code

e.g. Compilers Translate Program in high-Level languages like C,C++, JAVA etc.

into machine code.

 Machine architecture differs in:

-Instruction Set

-Instruction formats

-Addressing Modes

-Registers support

 Machine independent

 There are aspects of system software that do not directly depend upon the type of

computing system /Machine

e.g. General design and logic of an assembler is same on most computers.

e.g. Code optimization techniques used by compilers.

1.3 The Simplified Instructional Computer (SIC)

4

 SIC is a hypothetical computer that includes the hardware

features most often found on real machines.

 Why the simplified instructional computer:

- To focus on central, fundamental, and commonly encountered

features and concepts.

 Two versions of SIC:

1. Standard model (SIC)

2. Extension version (SIC/XE)

 Upward compatible

-Program for SIC can run on SIC/XE

SIC Machine Architecture(Standard version)

5

 Memory
215 (32,768) bytes in the computer memory.

3 consecutive bytes form a word.

byte addressable memory

 Registers (5 Nos, 24 bits in length)

SIC Machine Architecture Contd…

6

 Data Format

Integers are stored as 24-bit binary numbers; 2’s

complement representation is used for negative values.

8-bit character support using ASCII code.

No floating-point hardware

 Instruction Formats:

 Addressing Modes:

x: indicate indexed - addressing mode

Note: () are used to indicate the content of a register.

SIC Machine Architecture Contd…

7

 Instruction Set

Load and Store: LDA, LDX, STA, STX etc.

Integer arithmetic operations: ADD, SUB, MUL, DIV, etc.

 All arithmetic operations involve register A and a word in

memory, with the result being left in the register(A).

Comparison: COMP

 COMP compares the value in register A with a word in

memory, this instruction sets a condition code CC to indicate

the result.

SIC Machine Architecture Contd…

8

Conditional jump instructions: JLT, JEQ, JGT

These instructions test the setting of CC and jump accordingly.

Subroutine linkage: JSUB, RSUB

 JSUB jumps to the subroutine, placing the return address in

register L (Linkage register)

 RSUB returns by jumping to the address contained in register L

SIC Machine Architecture Contd…

9

 Input and Output(IO)

Input and output are performed by transferring 1 byte at a

time to or from the rightmost 8 bits of register A.

The Test Device (TD) instruction tests whether the

addressed device is ready to send or receive a byte of

data

Read Data (RD)

Write Data (WD)

SIC Programming Example

10

Assembler directives

for defining storage

Address labels

SIC/XE Machine Architecture

11

 Memory

220 bytes in the computer memory

3 consecutive bytes form a word.

byte addressable memory

 Registers(Additional)

SIC/XE Machine Architecture Contd..

12

 Data Format(Additional)

Floating-point data type

SIC/XE Machine Architecture Contd…

 Instruction formats

No memory
reference

Relative
addressing

Extended
address field

for target address calculation

SIC

e=0

e=1

No memory
reference

14

SIC/XE Machine Architecture Contd…

 Base Relative Addressing Mode

 Program-Counter Relative Addressing Mode

n i x b p e

opcode 1 0 disp.

b=1, p=0, TA=(B)+disp (0disp 4095)

n i x b p e

opcode 0 1 disp.

b=0, p=1, TA=(PC)+disp (-2048disp 2047)

•Addressing Modes:

15

SIC/XE Machine Architecture Contd…

Direct Addressing Mode
n i x b p e

opcode 0 0 disp

b=0, p=0, TA=disp (0disp 4095)

n i x b p e

opcode 1 0 0 disp

b=0, p=0, TA=(X)+disp

(with index addressing mode)

16

 Immediate Addressing Mode

 Indirect Addressing Mode

n i x b p e

opcode 0 1 0 disp

n=0, i=1, x=0, Operand=disp

n i x b p e

opcode 1 0 0 disp

n=1, i=0, x=0, TA=(disp)

SIC/XE Machine Architecture Contd…

Note: Indexing cannot be used with immediate or indirect addressing modes.

17

 Simple Addressing Mode
n i x b p e

opcode 0 0 disp

i=0, n=0, TA = bpe+disp (SIC standard)

opcode+n+i = SIC standard opcode (8-bit)

n i x b p e

opcode 1 1 disp

i=1, n=1, TA=disp (SIC/XE standard)

SIC/XE Machine Architecture Contd…

SIC/XE Machine Architecture Contd…

18

 Instruction set
 Load and store registers

 LDA, LDX, STA, STX, LDB, STB, …

 Integer arithmetic operations

 ADD, SUB, MUL, DIV, ADDF, SUBF, MULF, DIVF, ADDR, SUBR,
MULR, DIVR

 Comparison COMP

 Conditional jump instructions (according to CC)

 JLE, JEQ, JGT

 Subroutine linkage

 JSUB

 RSUB
 Input and output

Three instructions:

 Test device (TD)

 Read data (RD)

 Write data (WD)

SIC/XE Programming Example

19

Module-2

Introduction:
Language Processors, The structure of a compiler, The evolution of
programming languages, Applications of compiler technology.

Lexical Analysis:
The role of lexical analyzer, Input buffering, Specifications of token,
recognition of tokens.

Content

Text Book: Compilers Principles, Techniques, and Tools by
Alfred V.Aho, Ravi Sethi, and Jeffrey D. Ullman, Addison-Wesley

Introduction

-Programming Languages are notations for describing computations to
people and the Machines.

-The Software running on all the computers was written in some
Programming Languages.

-Before a program can be run , it first must be translated into a form in
which it can be executed by a Computer.

-The System Software that do this translation are called Compilers

Language Processor: Compiler.

A compiler is a program that can read a program in one language the

source language - and translate it into an equivalent program in another

language - the target language;

An important role of the compiler is to report any errors in the source

program that it detects during the translation process

A Compiler
Running the Target Program

An interpreter is another common kind of language processor. Instead

of producing a target program as a translation, an interpreter appears

to directly execute the operations specified in the source program on

inputs supplied by the user.

Language Processor: Interpreter.

An Interpreter

Complier Versus Interpreter

Debugging is comparatively easy while
working with an Interpreter.

Debugging of the program is
comparatively complex while working
with a compiler.

Language Processor: Hybrid Translator

A Hybrid Translator

A Java source program may first be compiled into an intermediate form called bytecodes.

The bytecodes are then interpreted by a virtual machine. A benefit of this arrangement is
that bytecodes compiled on one machine can be interpreted on another machine, perhaps
across a network.

In order to achieve faster processing of inputs to outputs, some Java compilers, called just-
in-time compilers, translate the bytecodes into machine language immediately before they
run the intermediate program to process the input.

Language Processing System

In addition to a Compiler, many other programs(System) may required to create an
executable Target Machine code as shown above fig.

The Structure of a Compiler

The phases of Compiler

The Analysis part breaks up the source program into constituents pieces and impose a
grammatical structure on them. It then uses this structure to create an intermediate
representation of the source program.

-If the analysis part detects that the source program contains an error, then it must
provide informative messages, so the user can take corrective action.
-Collects information about source program and stores it in a data structure called a
symbol table for later use be all phases.

The Synthesis part constructs the desired target program from the intermediate
representation(IR) and the information in the symbol table.

The analysis part is often called the Front end(Machine-Independent but Language
Dependent) of the compiler and synthesis part is called Back end (Machine dependent)

Lexical Analysis:

Lexical Analyzer(Scanner) reads the stream of characters from the source program and
groups characters into a meaningful sequences called Lexemes and produce as an output a
token for each lexeme in the source program. Token format:

Syntax Analysis:
The second phase of compilation is called Syntax analysis or parsing. In this phase
expressions, statements, declarations etc. are identified by using the results of lexical analysis.
Syntax analysis is aided by using techniques based on formal grammar of the programming
language and produce a syntax tree (also called Parse tree)

Semantic Analysis:

The semantic analyzer use the syntax tree and the information in the symbol table
to check the source program for semantic consistency with the language definition.
It also does the type checking and type casting kind of activities.

Intermediate Code Generations:

Code Optimization :
This is optional phase described to improve the intermediate code so that the output
runs faster and takes less space.

Code Generation:

Symbol Table :

This data structure is implemented using Hashing Technique and its Dynamic

Error Handler:

It is invoked when an errors in the source program is detected by compiler to handle
the errors.

Compiler Construction Tools

The Evolution of Programming Languages

Ex.:
Procedure-Oriented Languages: FORTRAN, COBOL, PASCAL, C etc.
Object-Oriented Languages: C++, C#, JAVA, Python, Ruby etc.
Scripting Languages: JavaScript, Perls, PHP, Python etc

Applications of Compiler Technology
Compiler technology has other important uses. Additionally, compiler design
impacts several other areas of computer science. In this section, we review the most
important interactions and applications of the technology.

1. Implementation of High-Level Programming Languages

A high-level programming language defines a programming abstraction: the programmer
expresses an algorithm using the language, and the compiler must translate that program to
the target language.

2. Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to an insatiable demand for new
compiler technology. Almost all high-performance systems take advantage of the same two
basic techniques: Parallelism and Memory hierarchies.
Parallelism: can be found at several levels: at the instruction level, where multiple operations
are executed simultaneously and at the processor level, where different threads of the same
application are run on different processors.
Memory hierarchies: Memory hierarchies consists of several levels of storage with different
speeds and sizes, with the level closest to the processor being the fastest but smallest. Memory
hierarchies are found in all machines to enhance the performance of the memory system.

3.Program Translations

While we normally think of compiling as a translation from a high-level language to the
machine level, the same technology can be applied to translate between different kinds of
languages. The following are some of the important applications of program-translation
techniques.

Binary Translation: Compiler Technology can be used to translate the binary code
for one machine to that of another.
Hardware Synthesis: Translating High level Hardware description written in
Languages like Verilog and VHDL into Hardware (physical) Circuit Design.
Query Interpreter: Database Queries can be compiled into commands to search
database for records.

4. Software Productivity Tools

Type Checking: Is an effective and well established technique to catch inconsistencies in
programs. It can be used to catch errors, where an operation is applied to the wrong type of
data object. It can also be used to catch a variety of security holes in software.

Many of the Data-flow –Analysis Techniques , originally developed for compiler optimizations,
can be used to assist the programmers in their software Engineering tasks to enhance the
software productivity. Some of the important software productivity tools include:

Garbage collection is another excellent example of the tradeoff between
efficiency and a combination of ease of programming and software reliability.
Automatic memory management eliminates all memory-management errors
(e.g., "memory leaks"), which are a major source of problems in C and C++
programs. Various tools have been developed to help programmers find
memory management errors. For example, Purify is a widely used tool that
dynamically catches memory management errors as they occur.

Memory-Management Tools

Bounds Checking

Many security breaches in systems are caused by buffer overflows in
programs, written in languages like C. Because C does not have array bounds
checks, its is up to the programmer to ensure that the arrays are not
accessed out of bounds - unsafe Language(C) and may leads to the security
compromise. The program written in safe Language(JAVA) that includes
automatic bound checking, this problem would not have occurred.

Syntax Analysis
(Parsing)

Module-3(Part-1)

Outline:

The Role of the parser
Error recovery Strategies or methods
Context free Grammars:Derivations,Parse Trees
Writing Context Free Grammars(CFG)
Computing FIRST and FOLLOW sets
Top-Down Parsers(RDP, Predictive)
Bottom-Up parser(Shift-Reduce, SLR)

Introduction: SYNTAX ANALYZER/PARSER

Parsing: The process of finding a parse tree for a given stream of
tokens received for the Lexical Analyzer.

The Role of The Parser

Types of parsers:

Common Programming Errors:

example is missing semicolon.

Goals of Error handler:

• Report the presence of errors clearly and
accurately in the source program.

• Recover from each error quickly enough to
detect subsequent errors.

• Add minimal overhead to the processing of
correct programs.

The error handler in a parser has goals that are simple to
state but challenging to achieve.

Once an error is detected, how should the parser recover?
Although no strategy has proven itself universally acceptable, a
few methods have broad applicability.

Error-Recovery Strategies

There are many different strategies that a parser can employ to
recover from a syntactic error. These are:

1. Panic-Mode recovery
2. Phrase-Level recovery
3. Error-Productions and
4. Global Correction.

Panic-Mode: This is the simplest method to implement and used by
most parsing methods. In this method, on discovering an error, the
parser discards input tokens one at a time until one of a designated
set of synchronizing tokens is found. The synchronizing tokens are
usually delimiters such as semicolon or }. The compiler designer must
select the synchronizing tokens appropriate for the source language.

Phrase-Level: On discovering an error, a parser may perform local
correction on the remaining input. A typical local correction is to
replace a comma by a semicolon, delete an extraneous semicolon, or
insert a missing semicolon. The choice of the local correction is
left to the compiler designer.

Error Productions: Using an error productions, we can generate
appropriate error diagnostic to indicate the erroneous construct
that has been recognized in the input. We can augment the grammar
for the language with productions that generate the erroneous
constructs.

Global Correction: There are algorithms for choosing minimal
sequence of changes to obtain a globally least-cost correction.
Unfortunately, these algorithms are in general too costly to
implement in terms of time and space, so these techniques are
currently only of theoretical interest.

Context-Free Grammar

Productions

Ex.: grammar to describe arithmetic expression :

E E + E | E – E | E * E | E / E | (E) | id (Ambiguous)

Grammars very powerful notation to systematically describe the
syntax of programming language constructs like expressions and
statements. The syntactic structure of a language is defined using
grammars.
Ex.: grammar that specifies the structure of the if-else statement:

stmt if (expr) stmt else stmt

E E +T | E – T | T

T T*F | T/F | F

F -E | (E) | id

Ex.: grammar to describe arithmetic expression :

(Unambiguous)

Definition: A CFG G , is a 4-tuple (V,T,P,S) ,
where:

V: a finite set of variables(Non-terminals)
T : a finite set of terminal symbols or simply terminals
P: a finite set of productions(Rules) of the A x,

where A is the Variable and x is any string of
zero or more grammars symbols(i.e terminals and
Non-terminals)

S: the start variable.

G:
S aS | A
A aA |bA | a

Where:
V ={ S,A} , T = { a, b} , P = { S aS | A, A aA| bA | a },
S= start variable

Notational Conventions:

1. These symbols are terminals:
1. Lowercase letters early in the alphabet, such as a, b, c.
2. Operator symbols such as +, * , and so on.
3. Punctuation symbols such as parentheses, comma, and so on.
4. The digits 0,1,…9.
5. Boldface strings such as id or if, each of which represents a single
terminal symbol.

2. These symbols are Non-terminals:
1. Uppercase letters early in the alphabet, such as A, B, C.
2. The letter S, which, when it appears, is usually the start symbol.
3. Lowercase, italic names such as expr or stmt.

3. Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar
symbols; that is, either Non-terminals or terminals.

In Short…

• Starting with start symbol,

Consider the Grammar for generating Arithmetic Expressions:

Suppose , we want to deriving string: -(id + id)

Derivation and Parse Tree:

The process of deriving a string is called as derivation.

At each step in a derivation, there are two choices to be
made. We need to choose which non-terminal to replace, and
having made this choice, we must pick a production with
that non-terminal as head

Derivations Contd…

Means derive string in zero or more steps
Means derive string in one or more steps

Leftmost derivation(LMD): The process of deriving a string by
expanding the leftmost non-terminal at each step of derivation.

Rightmost derivation(RMD): The process of deriving a string by
expanding the rightmost non-terminal at each step of derivation.

Example:

For the context-free grammar:

Practice Problems:

For each of the following context-free grammar, Obtained LMD,RMD
and Parse tree for the given string of Tokens(symbols)

Parse Tree:

String: -(id + id)

Writing a Grammar

Transformation Techniques:

1. Eliminating Ambiguity
2. Left Factoring of Grammar
3. Elimination of left recursion

•Grammars are capable of describing most, but not all, of the
syntax of programming languages.

-For instance, the requirement that variable be declared before they are

used, cannot be described by a context-free grammar.

In this section, We consider some transformation techniques to
get a grammar more suitable for parsing.

Ambiguous Grammar:

A grammar that produce more then one parse tree for some
sentence is said to be an ambiguous. Put another way, an ambiguous
grammar is one that produces more than one leftmost derivation or more than one
rightmost derivation for the same sentence.

For most parsers, it is desirable that the grammar be
made unambiguous.

Fortunately, we can eliminate ambiguity from the grammars
written for most of the program constructs.

Eliminating Ambiguity:

E E + E | E*E | (E) |-E | id

Ex.: The arithmetic expression grammar below permits two distinct
leftmost derivations for the sentence id + id * id.

Parse tree-1
(Correct)

Parse tree-2
(Incorrect)

Two LMDs for same sentence

Another Example: Check whether the given grammar G is ambiguous or not.

S → aSb | SS
S → ε

For the string "aabb" the above grammar can generate
two parse trees:

Since there are two parse trees for a single string "aabb", the
grammar G is ambiguous.

1. Eliminating Ambiguity from Grammar:

E E + T | E-T | T
T T * F | T/F | F
F -E | (E) | id

Where E,T,F are Non-Terminals, +, -, *, / , (,) and id are
Terminals.
Formally:

G = ({E,T,F}, {+,-,*,/,(,),id}, P, E)

E E + E | E-E | E*E | E/E | (E) | -E | id
Elimination of ambiguity by

considering an operator
precedence and associatively

rules.

Resulting Grammar

Another Example: if… else statement

Two Parse Trees for the above string(refer Prev. slide)

Unambiguous Grammar

2. Left factoring of Grammar:

Left factoring is a grammar transformation Technique that
is useful for producing a grammar suitable for top-down
parsing.

Consider following grammar:
S i E t S e S | i E t S | a
E b

On seeing input i it is not clear for the parser which
production to use.

In General ,we can easily perform left factoring:
If we have A αβ1 | αβ2 | γ , then we can replace it

with: A α A’ | γ
A’ β1 | β2

Left factoring of Grammar Contd…

Example(1):

S i E t S e S | i E t S | a
E b

S i EtSS’ |a
S’ eS | ɛ
E b

Before Left-Factoring After Left-Factoring

Another Example(2):

1. Eliminate left factor from the following grammar:

A aAB|aBc |aAc
B b

Practice problem…

1.Perform the left factoring for the following grammar:

S bSSaaS | bSSaSb | bSb | a

2. Do left factoring in the following grammar:

S → aAd | aB
A → a | ab
B → ccd | ddc

3. Elimination of left recursion:

 A grammar is left recursive if it has a non-terminal A
such that there is a derivation (i.e. A derives
Aα in one or more steps of derivations)

 Top down parsing methods can not handle left-recursive
grammars.

 Left recursion is considered to be a problematic situation
for all the Top down parsers.

 Therefore, left recursion has to be eliminated from the
grammar.

Example:
S Sa | ∈ (Left Recursive Grammar)

 Left recursion can be of two types :

 1) Direct or Immediate 2) Indirect or Intermediate

 A simple rule for Direct left recursion elimination:

For a rule like:
A Aα | β

We may replace it with(Equivalent):

A βA’
A’ αA’ | ɛ

Note: α , β, γ etc. a Greek letters denotes string of terminals or Non-terminals
or both.

Elimination of Left-Recursion Contd…

More Generally…

Indirect Left recursion: S is Indirect
left -Recursive

Algorithm: To eliminate Left recursion from G

METHOD:

Example-1: Eliminate Left recursion

S Aa | b

The grammar after eliminating left recursion

Example-2: Eliminate Left recursion

E E + T | T
T T* F | F
F (E) | -E | id

E TE’
E’ +TE’ | ∈
T FT’
T’ *FT’ | ∈
F (E) | -E | id

Example-3: Eliminate Left recursion

S (L) | a
L L,S | S

Practice Problem…

1. Consider the following grammar and eliminate left recursion

S aB | aC | Sd | Se
B bBc | f
C g

2) Consider the following grammar and eliminate left recursion

S Sb |Ba | a
B BSb|Sa |b

Watch this Video: https://www.youtube.com/watch?v=3_VCoBfrt9c

https://www.youtube.com/watch?v=3_VCoBfrt9c

Module -3 (Part-2)

(Top- down and Bottom-up parsing)

Introduction (Top-down parsing)

 Top-down parsing can be viewed as finding a leftmost
derivation for an input string.

 A Top-down parser tries to create a parse tree from the
root towards the leafs scanning input from left to right.

 The sequence of parse trees in Fig. for the input id+id*id is
a top-down parse according to the grammar below.

E TE’
E’ +TE’ | Ɛ
T FT’
T’ *FT’ | Ɛ
F (E) | id

The top down Parse for : id+id*id

E TE’
E’ +TE’ | Ɛ
T FT’
T’ *FT’ | Ɛ
F (E) | id

Introduction Contd.

• Constructing a parse tree for an input string starting from
the root.

• Finding Left-Most -Derivation(LMD)

• At each step of a derivation, the Key Problems are:

1. Determine the correct production to be applied.

2.Matching terminal symbols in the production„s body with
input string.

Actions of Top-down Parser:

Action Description

Expand
Expand leftmost Non-terminal in the Sentential
form with correct A-production‟s body(i.e. LMD)

Match
Match the current input symbol with terminal
symbol in the body of the production.

Accept
Announce successful completion of parsing on
Input string.

Error Discover a syntax error in the input.

 In this section, we study two top-down Parsing
Techniques:

 1. Recursive –Descent Parser(Procedure–driven)

 General form of Top-down Parsing.

 May require Backtracking to find correct production to

be applied for expand action.
(Drawback: repeated scan of the same input may required)

 Try one production at a time for a Non-terminal.

 2. Predictive-Parser/LL(1) Parser(Table –Driven)

 A special case of Recursive- Descent Parsing Technique

 Backtracking not required(Advantage)

Chooses correct A-production by looking ahead in the
input a fixed number of symbols (Typically 1 symbol)

Example(Backtracking)

S cAd
A ab | a

Input:

S

c A d

S

c A d

a b

S

c A d

a

c a d $

Backtrack

Success

Recursive-Descent Parsing:

Note: $ is input right end marker

Recursive-Descent Parser(RDP):

 Consists of a set of procedures(functions) one for each
Non-terminal.

 Execution begins with the procedure for start symbol.

 A typical procedure for a Non-terminal A of G:

void A()
{

Choose an A-Production, A X1X2..Xk

for (i =1 to k)
{

if (Xi is a Nonterminal)
call procedure Xi();

else if (Xi = current input symbol a)
advance the input to the next symbol;

else error() ; /* an error has occurred */
}

}

Recursive- Descent parsing contd.

 In general RDP may require backtracking (that is, it may
require repeated scans over the input)

 However, backtracking is rarely needed to parse
programming language constructs(statements).

 The previous code needs to be modified to allow
backtracking.

 In general, we can‟t choose an A-production easily.

 So, we must try each of several alternatives productions in
some order, until it finds correct one for expansion.

 In order to try another A-production, the input pointer
needs to be reset to where it was before this production
was tried.

 Recursive descent parsers can‟t be used for left-recursive
and left factor grammars.

Problem: Write a recursive-Descent Parser for the Grammar.

S cAd

A ab | a

Procedure for S: S cAd
void S()

{
if(input symbol == „ c ‟)

{
advance the input to the next symbol;
A();

if (input symbol == „ d ‟)
advance the input to the next symbol;

else
error(); /* Parsing fails */

}
else

error(); /* parsing fails */

} /* end of S() */

Procedure for A: A ab | a
void A()

{

int prod =1; /* try first production*/

while(1) /* repeat until success or error */

{

switch(prod)

{

case 1: if(input symbol = = ‘a’)

advance the input to the next symbol;

else { backtrack(); prod = 2 ; break; } /* try second production*/

if(input symbol = = ‘b’)

advance the input to the next symbol; /* success & return */

else { backtrack(); prod =2; break; } /* try second production*/

break;

case 2: if(input symbol = = ‘a’)

advance the input to the next symbol; /* Success & return */

else error(); /* both productions tried & Parsing fails */

break;

} /* end of switch */

}

} /* end of A() */

Fig.: Trace on the input : cad$

S

c A d

S

c A d

a b

S

c A d

a

Backtrack

Parsing success

S cAd

A ab | a

Predictive parsing

Predictive parsing is Table –Driven method.
It is also called LL(1) parsing method.

(L: Scan input string from Left - right,
L: using LMD, looking 1 symbol ahead at input)

A special case of Recursive- Descent Parsing.

Backtracking is not required.
(i.e. no repeated scan of input – Advantage)

Chooses correct A-production by looking ahead at the
input a fixed number of symbols, typically we may look at 1
(that is, the next input symbol)

Steps in Design of Predictive/LL(1) Parser…

 Step-1 : Transform the Grammar G ,to make it suitable

for LL(1) parsing(left recursion, left factor etc.)

• Step-2: Compute FIRST and FOLLOW sets for each

Nonterminals(Variables) of G.

 Step-3: Construct Predictive parsing/LL(1) Parsing

table.

 Step-4: Apply parsing Algorithm to parse the given

input string and produce parse tree.

Computing FIRST and FOLLOW sets

Definitions:

 FIRST(α) is set of terminals that begins strings derived
from α (where α is a string of grammar symbols)

 If α => ɛ then add ɛ to FIRST(α) also.

 FOLLOW(B), for any Nonterminal B, is set of terminals a
that can appear immediately after B in some sentential form.
 If we have S => αBaβ for some α and β then a is in

FOLLOW(B)

Computing FIRST(): Procedure

 To compute FIRST(A) for all Non-terminal A of G, apply
following rules until no more terminals or ɛ can be added to
any First set:

1. If X is a terminal then FIRST(X) = { X }.

2. If X is a Non-terminal and X Y1Y2…Yk is a production
for some k >= 1, then place a in FIRST(X) if for some i, a
is in FIRST(Yi) and ɛ is in all of FIRST(Y1),…,FIRST(Yi-1)
that is Y1…Yi-1 => ɛ.

Also, if ɛ is in FIRST(Yj) for j=1,…,k then add ɛ to
FIRST(X).

3. If X ɛ is a production then add ɛ to FIRST(X)

Computing FOLLOW(): Procedure

 To compute FOLLOW(B) for all Non-terminals B of G, apply
following rules until nothing can be added to any follow set:

1. Place $ in FOLLOW(S), where S is the start symbol.

2. If there is a production AαBβ then everything in
FIRST(β) except ɛ is in FOLLOW(B).

3. If there is a production AαB or a production
A αBβ, where FIRST(β) contains ɛ, then everything in
FOLLOW(A) is in FOLLOW(B)

FIRST(E) = { (, id }

FIRST(E’) = { +, ɛ }

FIRST(T) = { (, id }

FIRST(T’) = { *, ɛ }

FIRST(F) = { (, id }

FOLLOW(E) = {), $ }

FOLLOW(E’) = {), $}

FOLLOW(T) = { +,) ,$ }

FOLLOW(T’) = {+,) ,$ }

FOLLOW(F) = { *, +,), $}

Compute FIRST and FOLLOW set for the Grammar below:

Example-1

Compute FIRST and FOLLOW sets for the following grammar :

S (L) | a

L SL’

L’ ,SL’| ɛ

Reference.:
S (L) | a
L L,S | S

Example-2

Watch this Video..

Additional Examples….u may

S iEtSS’ | a
S’ eS | Ɛ
E b

Practice problem:

Compute FIRST and FOLLOW sets for the following grammar.

https://www.youtube.com/watch?v=4h3Z8vxUEm0

Structure of Predictive Parsing Table

NonTerminals

S

A

Input symbols/terminals

$

M

….

.

.

a

S α

Design of predictive/LL(1) parsing table

b …

M[S,a]

AXa

Construction of predictive parsing table

 For each production Aα in grammar do the following:

1. For each terminal a in FIRST(α) add Aα in M[A,a]

2. If ɛ is in FIRST(α), then for each terminal b in FOLLOW(A)
add Aɛ to M[A,b].

3. If ɛ is in FIRST(α) and $ is in FOLLOW(A), add A ɛ to

M[A,$] as well.

Note: 1. After applying the above algorithm for each

production , unfilled cells in the Parsing Table implies

error case.

2. If there are any conflicting entries in Parsing Table
then grammar is said to be not LL(1).

Consider the following Grammar:

S (L) | a
L L,S | S

i) Make necessary changes to make it suitable for LL(1) parsing.
ii) Compute FISRT and FOLOW sets

iii) Construct the Predictive/LL(1) parsing table.

i) Eliminating Left-recursion from the grammar:

S (L) | a

L SL’

L’ ,SL’| ɛ

ii) Computing FIRST and FOLLOW sets

FISRT(S) = { (, a }

FIRST(L) = { (, a }

FIRST(L’) = { , , ɛ }

FOLLOW(S) = { $, ,) }

FOLLOW(L) = {) }

FOLLOW(L’) ={) }

iii) Design of Parsing Table

S (L) | a

L SL’

L’ ,SL’| ɛ

predictive parser(Non-recursive): Model

a + b $

Predictive

parsing

program

output

Parsing Table Mstack

X

Y

Z

$

Input (w)

Top

Predictive parser: Algorithm
Set ip point to the first symbol of w$;
Set X stacktop();
While (X < > $) /* stack is not empty */

{
if (X == current input symbol)

pop() and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is blank entry) error();
else if (M[X,a] = X Y1Y2..Yk)

{
pop();
push Yk,…,Y2,Y1 on to the stack with Y1 on top;

}
X stacktop();

}

(Refer Parsing-Table of expression Grammars)

Show the moves made by a Predictive parser on input: id+id

1) Consider the Grammar

S → A

A → aB | Ad

B → b

C → g

i) Make necessary changes to make it suitable for LL(1) parsing.

ii) Compute FIRST and FOLLOW sets

iii) Construct Predictive parsing table. Is Grammar LL(1) ? Justify

iv) Show the moves made by the predictive parser on input: abdd

PRACTICE PROBLEMS(predictive parsing)

2) Construct predictive parsing table by making necessary changes to the grammar

given below:

S Ac

A Ac | ε

B d | ε

3) Construct predictive parsing table for the following grammar:

S AA

T aA | b

Introduction…

• A bottom-up parse corresponds to the Construction of
parse tree for an input string beginning at the leaves (the
bottom) and working towards the root (the top)

• Uses reverse of right-most derivation

• This section, we study a general style of bottom-up parsing
known as Shift-Reduce parsing

 Example:

E E + T | T
T T * F | F
F (E) | id

id

F * idid*id T * id

id

F

T * F

id

F id T * F

id

F id

T

T * F

id

F id

T

E

E =>T=> T*F => T*id => F*id => id*id

RMD:

A bottom-Up parse for : id*id

Handle :
A Handle is a substring that matches the body of a
production and whose reduction represents one step along
the reverse of a rightmost derivation(RMD).

Reductions:
-We can think of bottom-up parsing as the process of
“reducing” a string w to the start symbol of the grammar.

-At each reduction step, a specific substring(handle)
matching the body of a production is replaced by the
Nonterminal at the head of that Production.

Handle pruning:

The process of discovering a handle & reducing it to the
appropriate left-hand side of a production is called handle
pruning. Handle pruning forms the basis for a bottom-up
parsing method.

E E + T | T
T T * F | F
F (E) | id

RMD: E =>T => T*F => T*id => F*id => id*id

Given the grammar S 0S1 | 01
Show all the handles during a parse of the string: 000111

Shift-Reduce parsing(SRP)

 Shift-Reduce parsing is a form of bottom-up parsing in
which a stack holds grammar symbols and input buffer
holds string to be parsed.

 The general idea is to shift some symbols of input to the
stack until a reduction can be applied.

 At each reduction step, a specific substring matching the
body of a production is replaced by the Non-terminal at
the head of the production.

 The key decisions during bottom-up parsing are about
when to reduce and about what production to apply.

 The goal of a bottom-up parser is to construct a RMD in
reverse.

Actions of Shift Reduce Parser

Stack implementation of a Shift -reduce parser

 A stack is used to hold grammar symbols

 Handle always appear on top of the stack

 Initial configuration:

Stack Input

$ w$

 Acceptance(final) configuration:

Stack Input

$S $

E E + T | T
T T * F | F
F (E) | id

Stack implementation of a Shift -reduce parser…

Ex.

Consider the grammar:

S 0S1 | 01
Show the moves made by shift-Reduce parse for the input
string: 000111

Practice Problem.

Conflicts during shit reduce parsing

 Two kind of conflicts(during parsing)

Shift/Reduce conflict

Reduce/Reduce conflict

 Example: Shift/Reduce Conflict

Stack Input

e …$$… iEtS

S iEtS | iEtSeS | a

E b

Parser‟s
Configuration at

some point in
time

Example: Reduce/Reduce conflict

A Ca | Db

B Ca | b

Stack Input

…$$… Ca

Parser's
Configuration at

some point in
time

 The most prevalent type of bottom-up parsers

 LR(k), mostly interested on parsers with k=o or k=1

 The “L” is for left-to-right scanning of input and “R” is
constructing a RMD in reverse, and k is the number of input
symbols of lookahead that are used in making parsing
decisions(k=1 , for most practical applications).

 Why LR parsers?

 Table driven

 Can be constructed to recognize all programming language
constructs

 Most general shift-reduce parsing method

 Can detect a syntactic error as soon as it is possible to do so

Introduction to LR Parsing: Simple LR

Significance of .(dot) in body of production

Constructing canonical LR(0) item sets
 Augment the grammar:

 G with addition of a production: S’S

 CLOSURE of item sets:

 If I is a set of items, closure(I) is a set of items constructed from I by
the following rules:

 Add every item in I to closure(I)

 If A α.Bβ is in closure(I) and B γ is a production then add the
item B.γ to closure(I).

 GOTO(I,X) where I is an item set and X is a grammar symbol is closure
of set of all items [A αX. β] where [A α.X β] is in I

E E + T

E T

T T * F

TF

F (E)

Fid

SLR Parser Design for given Grammar G

E’ E

E E + T

E T

T T * F

TF

F (E)

Fid

G

Augmentation

Construct LR(0) Automata(DFA)

Designing of SLR parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(0) items for G’
 State i is constructed from state Ii:

 If [Aα.aβ] is in Ii and GOTO(Ii,a)= Ij, then set ACTION[i,a] to “shiftj”
 If [Aα.] is in Ii, then set ACTION[i,a] to “reduce A α” for all a in

follow(A)
 If {S’.S] is in Ii, then set ACTION[i,$] to “Accept”

 If any conflicts appears then we say that the grammar is not
SLR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the

set of items containing [S’.S]

SLR Parsing Table for G

E’ E
E E + T ---(1)
E T ---(2)
T T * F ---(3)
TF ---(4)
F (E) ---(5)
Fid ---(6)

STATE ACTON GOTO

id + * () $ E T F

0 S5 S4 1 2 3

1 S6 Accept

2 R2 S7 R2 R2

3 R4 R7 R4 R4

4 S5 S4 8 2 3

5 R6 R6 R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 R1 S7 R1 R1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

Augmented grammar

Follow(E) ={ $, +,) }

Follow(T) ={ $,+,*,) }

Follow(F) ={ $,+,*,) }

LR-Parsing model

a1 … ai … an $INPUT

LR Parsing
Program

Sm

Sm-1

…

$

ACTION GOTO

Output

LR parsing algorithm

let a be the first symbol of w$;
while(1) { /*repeat forever */

let s be the state on top of the stack;
if (ACTION[s,a] = sj) {

push j onto the stack;
let a be the next input symbol;

} else if (ACTION[s,a] = reduce Aβ) {
pop |β| symbols off the stack;
let state t now be on top of the stack;
push GOTO[t, A] onto the stack;
}

else if (ACTION[s,a]= accept) break; /* parsing is done */
else

error(); /* Parsing is unsuccessful */
}

Stack Input Action

$0 id*id+id$ Shift 5

$05 *id+id$ Reduce by Fid (i.e 6th prod.)

$03 *id+id$ Reduce by TF

$02 *id+id$ Shift 7

$027 id+id$ Shift 5

$0275 +id$ Reduce by Fid

$02710 +id$ Reduce by TT*F

$02 +id$ Reduce by ET

$01 +id$ Shift 6

$016 id$ Shift 5

$0165 $ Reduce by Fid

$0163 $ Reduce by TF

$0169 $ Reduce by EE+T

$01 $ accept

Moves made by SLR parser on: id*id+id

SLR(1) parser design..another Example

Consider the following grammar:

S AA

A aA | b

1) Construct the DFA of LR(0) item sets.

2) Design/construct SLR parsing table.

Augment the given Grammar

S AA

A aA | b

S’ S

S AA

A aA | b

After augmentationGiven Grammar

Construct LR(0) items sets(automaton)

I0

S’ .S
S .AA
A .aA
A.b

I1

S’ S.
S

I2

S A.A
A .aA
A .b

A

I3

A a.A
A .aA
A.b

a

I4

A b.

b

I5

S AA.

A

I6

A aA.
a

b

A

a

b

Accept

closure{S’.S}

 Construction of SLR(1) Parsing Table…

SLR(1) Parsing Table

FOLLOW(S) = { $ }

FOLLOW(A) = { a,b,$}

S’ S

S AA ---(1)

A aA --- (2)

A b ----(3)

STATES ACTION GOTO

a b $ S A

0 S3 S4 1 2

1 Accept

2 S3 S4 5

3 S3 S4 6

4 R3 R3 R3

5 R1

6 R2 R2 R2

Practice Problem…

S AaBb | BbBa

A ε

B ε

Consider the following grammar:

1) Obtain the canonical collection of LR(0) items sets.

2) Construct the SLR parsing table

3) Is the grammar SLR(1)? If not , give reasons?

Lex and Yacc –The Simplest Lex Program, Grammars, Parser-Lexer Communication, A
YACC Parser, The Rules Section, Running LEX and YACC, LEX vs. Hand-written Lexers.

Using LEX - Regular Expressions, Examples of Regular Expressions, A Word Counting
Program.

Using YACC – Grammars, Recursive Rules, Shift/Reduce Parsing, What YACC Cannot
Parse, A YACC Parser - The Definition Section, The Rules Section, The LEXER, Compiling
and Running a Simple Parser, Arithmetic Expressions and Ambiguity.

Module-4

Topic: Introduction to lex and yacc

A Step – Back: Phases of Compiler

Chapter-1: Introduction
Lex and Yacc help us to write a programs that transform structured

input.
Enormous range of applications from simple search application to a

compiler that transform a source program into optimized object code.
 In a program with structured input, two tasks that occur over & over

are:
1. Dividing the input into meaningful units called lexeme(tokens).
2. Then discovering the relationship among these tokens.

For a C program ,the tokens are variables, keywords,
constants, strings, operators, punctuations and so forth.

This division into tokens is known as Lexical Analysis or
lexing for short.

The token descriptions that lex uses are known as regular
expressions and lex turns these REs into a form that the lexar can use
to scan the input text extremely fast to match and recognize lexmes.

As the input is divided into lexemes, a program often needs
to establish the relationship among the tokens - called Parsing.

The list of Rules that define the relationship that program
understands is called a Grammar.

The Yacc takes a concise description of a grammar and
produces a C -routine that can parse that grammar, a Parser.

The Yacc parser automatically detects whenever a sequence
of input tokens matches one of the rules in the grammar
and also detects a syntax error whenever its input doesn’t
match with any rules(productions).

“When a task involves dividing input into units

and establishing some relationship among those

units, you should think of Lex and Yacc”

LEX

Creating &
Executing Lex

Program

The Simplest Lex Program

The simplest lex program copies its input to standard output:

%%

. | \n { printf(“%s”, yytext); }

%%

main()
{
printf(“ Enter input string\n”);
yylex();

}

Lex automatically generate the actual C program code
needed to handle reading the input and writing the output.

%{

#include<stdio.h> /* Program to recognize C Keywords */

%}

%%

int|float| for | do | switch | if |else { printf(“%s: Keyword”, yytext); }

%%
main()

{
printf(“ Enter the string\n”);
yylex();

}

Lex program to Recognizing C Keywords.

Grammar:

For some applications, the simple kind of word recognition
may be more than enough.

But, others need to recognize specific sequences of tokens
and establish relations among tokens using appropriate rules.

Traditionally, a description of such a set of rules is known as
a Grammar.

Ex: Expression grammar

E E + T | T
T T * F | F
F (E) | num

Parser- Lexer Communication

When we use a lex scanner and a yacc parser together, the
parser is the high level routine .

It calls the lexer yylex() whenevr it needs a token from the
input. The lexer then scans through the input recognizing
tokens.

As soon as it finds a token of interest to the parser, it
returns to the parser.

Yacc
Yacc (Yet another compiler compiler) is a tool used to
generate a parser. Yacc translates a given Context Free
Grammar (CFG) specifications into a C implementation. This C
program when compiled, yields an executable parser.

Steps in
Creating and

Executing Yacc
Programs

https://silcnitc.github.io/yacc.html
https://silcnitc.github.io/yacc.html
https://silcnitc.github.io/yacc.html
https://silcnitc.github.io/yacc.html
https://silcnitc.github.io/yacc.html
https://silcnitc.github.io/yacc.html
https://silcnitc.github.io/yacc.html

The Structure of Yacc Program

A YACC program consists of three sections: Declarations,
Rules and Auxiliary functions. (Note the similarity with the
structure of LEX programs).

Program Structure

Example

Declarations: The declarations section consists of two parts:
(i) C declarations and (ii) YACC declarations. The C
Declarations are delimited by %{ and %}.

Rules:A rule in a YACC program comprises of two parts
(i) the productions/rules part and (ii) the action part. A rule
in YACC is of the form:

Production_head : production_body { action in C }

Auxiliary Functions:
The Auxiliary functions section contains the definitions of three
mandatory functions main(), yylex() and yyerror(). You may wish to
add your own functions (depending on the the requirement for the
application) in the y.tab.c file. Such functions are written in the
auxiliary functions section. The main() function must invoke
yyparse() to parse the input.

Yacc program to recognize string with grammar { anbn | n ≥ 0 }

%{

/* Definition section */

#include "y.tab.h"

%}

/* Rule Section */

%%

[a] { return A; }

[b] { return B; }

%%

%{
#include<stdio.h> /* Definition section */
#include<stdlib.h>

%}
%token A B /* A,B are tokens from lexer */
%%
S : X ‘\n’ { printf(“Valid String\n"); exit(0); }

;
X : A X B |

;
%%

int yyerror(char *msg)
{
printf(“Invalid string\n");
exit(0);
}
main()
{
printf(“Enter the string\n");
yyparse();
}

Lex program

Yacc program

Running Lex and Yacc(in Ubuntu)

$ lex file1.l
$ yacc –d file2.y
$ cc lex.yy.c y.tab.c
$./a.out

USING Lex

When we write a lex specification, we create a set of
patterns which lex matches against input string.

Each time one of the patterns matches , the lex program
invokes C code in the action portion which does something
with the matched text.

This way a lex program divides the input into lexeme.
Lex translates the lex specification into a file containing a C
function called yylex().

Using regular C compiler, we can compile the file
(i.e. lex.yy.c) that lex produced.

You specify the patterns you are interested in with a notation

called a regular expression. A regular expression is formed by

stringing together characters with or without operators. The

simplest regular expressions are strings of text characters

with no operators at all.

Regular Expressions

Ex. Lex specification to recognize an identifiers.

%%
[\n\t]+ { ; }

[a-zA-Z][a-zA-Z0-9_]* { printf(“ Identifier\n”); }
. { ; }
%%

main ()
{
yylex();

}

%%
[\n\t]+ { ; }

[0-9]+ {
printf(“ INTEGER\n”) ;
}

%%

main()
{
yylex();

}

%%
[\n\t]+ { ; }

([0-9]+) |([0-9]* \. [0-9]+) { printf(“REAL No.\n”);
}

. { ; }
%%

main()
{
yylex();

}

Lex specification for integer
numbers

Lex specification for decimal numbers

Ex. Lex specification

%%

“ Hello World” { printf(“ GOOD BY\n”); }
. { ; }

%%

main ()
{

printf(“ Enter a string\n”);
yylex();

}

Lex program to match “ Hello World”

Write a lex program to find the number of vowels and consonants

%{ /* to find vowels and consonents*/
int vowels = 0; int consonents = 0;
%}
%%
[\t\n]+ ;
[aeiouAEIOU] { vowels++;}
[bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ] { consonents++;}
. ;
%%
main()
{
yylex();
printf(" The number of vowels = %d\n", vowels);
printf(" number of consonents = %d \n", consonents);
}

yywrap()
{

return 1;
}

Write a lex program to find the number of positive integer, negative integer number .

%{
int posnum = 0,negnum = 0, posflo = 0, negflo = 0;
%}
%%
[\n\t] ;
([0-9]+) { posnum++;}
-?([0-9]+) { negnum++; }
. ECHO;
%%
main()
{
yylex();
printf("Number of positive numbers = %d\n", posnum); printf("number of
negative numbers = %d\n", negnum);
}

RECOMMENDED QUESTIONS:
1. write the specification of lex with an example?
2. what is regular expressions? With examples explain?
3. write a lex program to count the no of words , lines , space, characters?
4. write a lex program to count the no of vowels and consonants?
5. what is lexer- parser communication? Explain?
6. write a program to count no of words by the method of substitution?
7. Write a LEX program to eliminate comment lines in a C program and copy the resulting

program into a separate file.
8. Develop a LEX program to count number of words, lines and characters in a given file.
9. Explain the general structure of YACC program with suitable example.?
10. What is grammar? How does yacc parse a tree?
11. How do you compile and run a yacc program? Explain.
12. Explain the ambiguity occurring in an grammar with an example?
13. Explain Shift - Reduce parsing ?
14. Write a Yacc program to recognize an valid variable which starts with letter followed by

a digit. The letter should be in lowercase only.
15. Write a yacc program to recognize the grammar { anb for n >= 0}.
16. Write YACC program to evaluate arithmetic expression involving operators: +, -, *, and /
17. Write YACC program to recognize valid identifier, operators and keywords in the given

text (C program) file.
18. Write a yacc program to test the validity of an arthimetic expressions

Chapter 5

Syntax-Directed

Translation

This chapter develops the theme of Section 2.3: the translation of languages
guided by context-free grammars. The translation techniques in this chapter
will be applied in Chapter 6 to type checking and intermediate-code generation.
The techniques are also useful for implementing little languages for specialized
tasks; this chapter includes an example from typesetting.

We associate information with a language construct by attaching attributes
to the grammar symbol(s) representing the construct, as discussed in Sec-
tion 2.3.2. A syntax-directed de�nition speci�es the values of attributes by
associating semantic rules with the grammar productions. For example, an
in�x-to-post�x translator might have a production and rule

PRODUCTION SEMANTIC RULE

E ! E1 + T E:code = E1:code k T:code k 0+0
(5.1)

This production has two nonterminals, E and T ; the subscript in E1 distin-
guishes the occurrence of E in the production body from the occurrence of E
as the head. Both E and T have a string-valued attribute code. The semantic
rule speci�es that the string E:code is formed by concatenating E1:code, T:code,
and the character 0+0. While the rule makes it explicit that the translation of
E is built up from the translations of E1, T , and

0+0, it may be ine�cient to
implement the translation directly by manipulating strings.

From Section 2.3.5, a syntax-directed translation scheme embeds program
fragments called semantic actions within production bodies, as in

E ! E1 + T f print 0
+0 g (5.2)

By convention, semantic actions are enclosed within curly braces. (If curly
braces occur as grammar symbols, we enclose them within single quotes, as in

303

304 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

0f0 and 0g0.) The position of a semantic action in a production body determines
the order in which the action is executed. In production (5.2), the action
occurs at the end, after all the grammar symbols; in general, semantic actions
may occur at any position in a production body.

Between the two notations, syntax-directed de�nitions can be more readable,
and hence more useful for speci�cations. However, translation schemes can be
more e�cient, and hence more useful for implementations.

The most general approach to syntax-directed translation is to construct a
parse tree or a syntax tree, and then to compute the values of attributes at the
nodes of the tree by visiting the nodes of the tree. In many cases, translation
can be done during parsing, without building an explicit tree. We shall therefore
study a class of syntax-directed translations called \L-attributed translations"
(L for left-to-right), which encompass virtually all translations that can be
performed during parsing. We also study a smaller class, called \S-attributed
translations" (S for synthesized), which can be performed easily in connection
with a bottom-up parse.

5.1 Syntax-Directed De�nitions

A syntax-directed de�nition (SDD) is a context-free grammar together with
attributes and rules. Attributes are associated with grammar symbols and rules
are associated with productions. If X is a symbol and a is one of its attributes,
then we write X:a to denote the value of a at a particular parse-tree node
labeled X . If we implement the nodes of the parse tree by records or objects,
then the attributes of X can be implemented by data �elds in the records that
represent the nodes forX . Attributes may be of any kind: numbers, types, table
references, or strings, for instance. The strings may even be long sequences of
code, say code in the intermediate language used by a compiler.

5.1.1 Inherited and Synthesized Attributes

We shall deal with two kinds of attributes for nonterminals:

1. A synthesized attribute for a nonterminal A at a parse-tree node N is
de�ned by a semantic rule associated with the production at N . Note
that the production must have A as its head. A synthesized attribute at
node N is de�ned only in terms of attribute values at the children of N
and at N itself.

2. An inherited attribute for a nonterminal B at a parse-tree node N is
de�ned by a semantic rule associated with the production at the parent
of N . Note that the production must have B as a symbol in its body. An
inherited attribute at node N is de�ned only in terms of attribute values
at N 's parent, N itself, and N 's siblings.

5.1. SYNTAX-DIRECTED DEFINITIONS 305

An Alternative De�nition of Inherited Attributes

No additional translations are enabled if we allow an inherited attribute
B:c at a node N to be de�ned in terms of attribute values at the children
of N , as well as at N itself, at its parent, and at its siblings. Such rules can
be \simulated" by creating additional attributes of B, say B:c1; B:c2; : : : .
These are synthesized attributes that copy the needed attributes of the
children of the node labeled B. We then compute B:c as an inherited
attribute, using the attributes B:c1; B:c2; : : : in place of attributes at the
children. Such attributes are rarely needed in practice.

While we do not allow an inherited attribute at node N to be de�ned in terms of
attribute values at the children of node N , we do allow a synthesized attribute
at node N to be de�ned in terms of inherited attribute values at node N itself.

Terminals can have synthesized attributes, but not inherited attributes. At-
tributes for terminals have lexical values that are supplied by the lexical ana-
lyzer; there are no semantic rules in the SDD itself for computing the value of
an attribute for a terminal.

Example 5.1 : The SDD in Fig. 5.1 is based on our familiar grammar for
arithmetic expressions with operators + and �. It evaluates expressions termi-
nated by an endmarker n. In the SDD, each of the nonterminals has a single
synthesized attribute, called val. We also suppose that the terminal digit has
a synthesized attribute lexval, which is an integer value returned by the lexical
analyzer.

PRODUCTION SEMANTIC RULES

1) L! E n L:val = E:val

2) E ! E1 + T E:val = E1:val+ T:val

3) E ! T E:val = T:val

4) T ! T1 � F T:val = T1:val � F:val

5) T ! F T:val = F:val

6) F ! (E) F:val = E:val

7) F ! digit F:val = digit:lexval

Figure 5.1: Syntax-directed de�nition of a simple desk calculator

The rule for production 1, L! E n, sets L:val to E:val, which we shall see
is the numerical value of the entire expression.

Production 2, E ! E1 + T , also has one rule, which computes the val
attribute for the head E as the sum of the values at E1 and T . At any parse-

306 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tree node N labeled E, the value of val for E is the sum of the values of val at
the children of node N labeled E and T .

Production 3, E ! T , has a single rule that de�nes the value of val for E
to be the same as the value of val at the child for T . Production 4 is similar to
the second production; its rule multiplies the values at the children instead of
adding them. The rules for productions 5 and 6 copy values at a child, like that
for the third production. Production 7 gives F:val the value of a digit, that is,
the numerical value of the token digit that the lexical analyzer returned. 2

An SDD that involves only synthesized attributes is called S-attributed; the
SDD in Fig. 5.1 has this property. In an S-attributed SDD, each rule computes
an attribute for the nonterminal at the head of a production from attributes
taken from the body of the production.

For simplicity, the examples in this section have semantic rules without
side e�ects. In practice, it is convenient to allow SDD's to have limited side
e�ects, such as printing the result computed by a desk calculator or interacting
with a symbol table. Once the order of evaluation of attributes is discussed
in Section 5.2, we shall allow semantic rules to compute arbitrary functions,
possibly involving side e�ects.

An S-attributed SDD can be implemented naturally in conjunction with an
LR parser. In fact, the SDD in Fig. 5.1 mirrors the Yacc program of Fig. 4.58,
which illustrates translation during LR parsing. The di�erence is that, in the
rule for production 1, the Yacc program prints the value E:val as a side e�ect,
instead of de�ning the attribute L:val.

An SDD without side e�ects is sometimes called an attribute grammar. The
rules in an attribute grammar de�ne the value of an attribute purely in terms
of the values of other attributes and constants.

5.1.2 Evaluating an SDD at the Nodes of a Parse Tree

To visualize the translation speci�ed by an SDD, it helps to work with parse
trees, even though a translator need not actually build a parse tree. Imagine
therefore that the rules of an SDD are applied by �rst constructing a parse tree
and then using the rules to evaluate all of the attributes at each of the nodes
of the parse tree. A parse tree, showing the value(s) of its attribute(s) is called
an annotated parse tree.

How do we construct an annotated parse tree? In what order do we evaluate
attributes? Before we can evaluate an attribute at a node of a parse tree, we
must evaluate all the attributes upon which its value depends. For example,
if all attributes are synthesized, as in Example 5.1, then we must evaluate the
val attributes at all of the children of a node before we can evaluate the val
attribute at the node itself.

With synthesized attributes, we can evaluate attributes in any bottom-up
order, such as that of a postorder traversal of the parse tree; the evaluation of
S-attributed de�nitions is discussed in Section 5.2.3.

5.1. SYNTAX-DIRECTED DEFINITIONS 307

For SDD's with both inherited and synthesized attributes, there is no guar-
antee that there is even one order in which to evaluate attributes at nodes.
For instance, consider nonterminals A and B, with synthesized and inherited
attributes A:s and B:i, respectively, along with the production and rules

PRODUCTION SEMANTIC RULES

A! B A:s = B:i;
B:i = A:s+ 1

These rules are circular; it is impossible to evaluate either A:s at a nodeN orB:i
at the child of N without �rst evaluating the other. The circular dependency
of A:s and B:i at some pair of nodes in a parse tree is suggested by Fig. 5.2.

A.s

B.i

A

B

Figure 5.2: The circular dependency of A:s and B:i on one another

It is computationally di�cult to determine whether or not there exist any
circularities in any of the parse trees that a given SDD could have to translate.1

Fortunately, there are useful subclasses of SDD's that are su�cient to guarantee
that an order of evaluation exists, as we shall see in Section 5.2.

Example 5.2 : Figure 5.3 shows an annotated parse tree for the input string
3 � 5 + 4 n, constructed using the grammar and rules of Fig. 5.1. The values
of lexval are presumed supplied by the lexical analyzer. Each of the nodes for
the nonterminals has attribute val computed in a bottom-up order, and we see
the resulting values associated with each node. For instance, at the node with
a child labeled �, after computing T:val = 3 and F:val = 5 at its �rst and third
children, we apply the rule that says T:val is the product of these two values,
or 15. 2

Inherited attributes are useful when the structure of a parse tree does not
\match" the abstract syntax of the source code. The next example shows how
inherited attributes can be used to overcome such a mismatch due to a grammar
designed for parsing rather than translation.

1Without going into details, while the problem is decidable, it cannot be solved by a
polynomial-time algorithm, even if P = NP, since it has exponential time complexity.

308 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

T:val = 15

� F:val = 5

digit:lexval = 3

digit:lexval = 5

T:val = 3

F:val = 3

L:val = 19

E:val = 15

digit:lexval = 4

F:val = 4

T:val = 4+

E:val = 19 n

Figure 5.3: Annotated parse tree for 3 � 5 + 4 n

Example 5.3 : The SDD in Fig. 5.4 computes terms like 3 � 5 and 3 � 5 � 7.
The top-down parse of input 3 � 5 begins with the production T ! F T 0. Here,
F generates the digit 3, but the operator � is generated by T 0. Thus, the left
operand 3 appears in a di�erent subtree of the parse tree from �. An inherited
attribute will therefore be used to pass the operand to the operator.

The grammar in this example is an excerpt from a non-left-recursive version
of the familiar expression grammar; we used such a grammar as a running
example to illustrate top-down parsing in Section 4.4.

PRODUCTION SEMANTIC RULES

1) T ! F T 0 T 0:inh = F:val

T:val = T 0:syn

2) T 0 ! � F T 0
1 T 0

1:inh = T 0:inh� F:val

T 0:syn = T 0
1:syn

3) T 0 ! � T 0:syn = T 0:inh

4) F ! digit F:val = digit:lexval

Figure 5.4: An SDD based on a grammar suitable for top-down parsing

Each of the nonterminals T and F has a synthesized attribute val; the
terminal digit has a synthesized attribute lexval. The nonterminal T 0 has two
attributes: an inherited attribute inh and a synthesized attribute syn.

5.1. SYNTAX-DIRECTED DEFINITIONS 309

The semantic rules are based on the idea that the left operand of the operator
� is inherited. More precisely, the head T 0 of the production T 0 ! � F T 0

1

inherits the left operand of � in the production body. Given a term x � y � z,
the root of the subtree for � y � z inherits x. Then, the root of the subtree for
� z inherits the value of x � y, and so on, if there are more factors in the term.
Once all the factors have been accumulated, the result is passed back up the
tree using synthesized attributes.

To see how the semantic rules are used, consider the annotated parse tree
for 3 � 5 in Fig. 5.5. The leftmost leaf in the parse tree, labeled digit, has
attribute value lexval = 3, where the 3 is supplied by the lexical analyzer. Its
parent is for production 4, F ! digit. The only semantic rule associated with
this production de�nes F:val = digit:lexval, which equals 3.

� F:val = 5

digit:lexval = 5

T 0

1:inh =
15
15

T 0

1:syn =

�

digit

15=T 0:syn
3=T 0:inh

:lexval = 3

F:val = 3

T:val = 15

Figure 5.5: Annotated parse tree for 3 � 5

At the second child of the root, the inherited attribute T 0:inh is de�ned by
the semantic rule T 0:inh = F:val associated with production 1. Thus, the left
operand, 3, for the � operator is passed from left to right across the children of
the root.

The production at the node for T 0 is T 0 ! �FT 0
1. (We retain the subscript

1 in the annotated parse tree to distinguish between the two nodes for T 0.) The
inherited attribute T 0

1:inh is de�ned by the semantic rule T
0
1:inh = T 0:inh�F:val

associated with production 2.
With T 0:inh = 3 and F:val = 5, we get T 0

1:inh = 15. At the lower node
for T 0

1, the production is T 0 ! �. The semantic rule T 0:syn = T 0:inh de�nes
T 0
1:syn = 15. The syn attributes at the nodes for T 0 pass the value 15 up the

tree to the node for T , where T:val = 15. 2

5.1.3 Exercises for Section 5.1

Exercise 5.1.1 : For the SDD of Fig. 5.1, give annotated parse trees for the
following expressions:

a) (3 + 4) � (5 + 6) n.

310 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

b) 1 � 2 � 3 � (4 + 5) n.

c) (9 + 8 � (7 + 6) + 5) � 4 n.

Exercise 5.1.2 : Extend the SDD of Fig. 5.4 to handle expressions as in
Fig. 5.1.

Exercise 5.1.3 : Repeat Exercise 5.1.1, using your SDD from Exercise 5.1.2.

5.2 Evaluation Orders for SDD's

\Dependency graphs" are a useful tool for determining an evaluation order for
the attribute instances in a given parse tree. While an annotated parse tree
shows the values of attributes, a dependency graph helps us determine how
those values can be computed.

In this section, in addition to dependency graphs, we de�ne two impor-
tant classes of SDD's: the \S-attributed" and the more general \L-attributed"
SDD's. The translations speci�ed by these two classes �t well with the parsing
methods we have studied, and most translations encountered in practice can be
written to conform to the requirements of at least one of these classes.

5.2.1 Dependency Graphs

A dependency graph depicts the ow of information among the attribute in-
stances in a particular parse tree; an edge from one attribute instance to an-
other means that the value of the �rst is needed to compute the second. Edges
express constraints implied by the semantic rules. In more detail:

� For each parse-tree node, say a node labeled by grammar symbol X , the
dependency graph has a node for each attribute associated with X .

� Suppose that a semantic rule associated with a production p de�nes the
value of synthesized attribute A:b in terms of the value of X:c (the rule
may de�ne A:b in terms of other attributes in addition to X:c). Then,
the dependency graph has an edge from X:c to A:b. More precisely, at
every node N labeled A where production p is applied, create an edge to
attribute b at N , from the attribute c at the child of N corresponding to
this instance of the symbol X in the body of the production.2

� Suppose that a semantic rule associated with a production p de�nes the
value of inherited attribute B:c in terms of the value of X:a. Then, the
dependency graph has an edge from X:a to B:c. For each node N labeled
B that corresponds to an occurrence of this B in the body of production
p, create an edge to attribute c at N from the attribute a at the node M

2Since a node N can have several children labeled X, we again assume that subscripts
distinguish among uses of the same symbol at di�erent places in the production.

5.2. EVALUATION ORDERS FOR SDD'S 311

that corresponds to this occurrence of X . Note that M could be either
the parent or a sibling of N .

Example 5.4 : Consider the following production and rule:

PRODUCTION SEMANTIC RULE

E ! E1 + T E:val = E1:val + T:val

At every node N labeled E, with children corresponding to the body of this
production, the synthesized attribute val at N is computed using the values of
val at the two children, labeled E and T . Thus, a portion of the dependency
graph for every parse tree in which this production is used looks like Fig. 5.6.
As a convention, we shall show the parse tree edges as dotted lines, while the
edges of the dependency graph are solid. 2

valval

val

T+E1

E

Figure 5.6: E:val is synthesized from E1:val and T:val

Example 5.5 : An example of a complete dependency graph appears in Fig.
5.7. The nodes of the dependency graph, represented by the numbers 1 through
9, correspond to the attributes in the annotated parse tree in Fig. 5.5.

val4F�

5 syn8inh

7

digit 2 lexval

T 06inh

�

syn

T 9 val

F 3 val

digit 1 lexval

T 0

Figure 5.7: Dependency graph for the annotated parse tree of Fig. 5.5

Nodes 1 and 2 represent the attribute lexval associated with the two leaves
labeled digit. Nodes 3 and 4 represent the attribute val associated with the
two nodes labeled F . The edges to node 3 from 1 and to node 4 from 2 result

312 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

from the semantic rule that de�nes F:val in terms of digit:lexval. In fact, F:val
equals digit:lexval, but the edge represents dependence, not equality.

Nodes 5 and 6 represent the inherited attribute T 0:inh associated with each
of the occurrences of nonterminal T 0. The edge to 5 from 3 is due to the rule
T 0:inh = F:val, which de�nes T 0:inh at the right child of the root from F:val
at the left child. We see edges to 6 from node 5 for T 0:inh and from node 4
for F:val, because these values are multiplied to evaluate the attribute inh at
node 6.

Nodes 7 and 8 represent the synthesized attribute syn associated with the
occurrences of T 0. The edge to node 7 from 6 is due to the semantic rule
T 0:syn = T 0:inh associated with production 3 in Fig. 5.4. The edge to node 8
from 7 is due to a semantic rule associated with production 2.

Finally, node 9 represents the attribute T:val. The edge to 9 from 8 is due
to the semantic rule, T:val = T 0:syn, associated with production 1. 2

5.2.2 Ordering the Evaluation of Attributes

The dependency graph characterizes the possible orders in which we can evalu-
ate the attributes at the various nodes of a parse tree. If the dependency graph
has an edge from node M to node N , then the attribute corresponding to M
must be evaluated before the attribute of N . Thus, the only allowable orders
of evaluation are those sequences of nodes N1; N2; : : : ; Nk such that if there is
an edge of the dependency graph from Ni to Nj , then i < j. Such an ordering
embeds a directed graph into a linear order, and is called a topological sort of
the graph.

If there is any cycle in the graph, then there are no topological sorts; that is,
there is no way to evaluate the SDD on this parse tree. If there are no cycles,
however, then there is always at least one topological sort. To see why, since
there are no cycles, we can surely �nd a node with no edge entering. For if there
were no such node, we could proceed from predecessor to predecessor until we
came back to some node we had already seen, yielding a cycle. Make this node
the �rst in the topological order, remove it from the dependency graph, and
repeat the process on the remaining nodes.

Example 5.6 : The dependency graph of Fig. 5.7 has no cycles. One topologi-
cal sort is the order in which the nodes have already been numbered: 1; 2; : : : ; 9.
Notice that every edge of the graph goes from a node to a higher-numbered node,
so this order is surely a topological sort. There are other topological sorts as
well, such as 1; 3; 5; 2; 4; 6; 7; 8; 9. 2

5.2.3 S-Attributed De�nitions

As mentioned earlier, given an SDD, it is very hard to tell whether there exist
any parse trees whose dependency graphs have cycles. In practice, translations
can be implemented using classes of SDD's that guarantee an evaluation order,

5.2. EVALUATION ORDERS FOR SDD'S 313

since they do not permit dependency graphs with cycles. Moreover, the two
classes introduced in this section can be implemented e�ciently in connection
with top-down or bottom-up parsing.

The �rst class is de�ned as follows:

� An SDD is S-attributed if every attribute is synthesized.

Example 5.7 : The SDD of Fig. 5.1 is an example of an S-attributed de�nition.
Each attribute, L:val, E:val, T:val, and F:val is synthesized. 2

When an SDD is S-attributed, we can evaluate its attributes in any bottom-
up order of the nodes of the parse tree. It is often especially simple to evaluate
the attributes by performing a postorder traversal of the parse tree and evalu-
ating the attributes at a node N when the traversal leaves N for the last time.
That is, we apply the function postorder, de�ned below, to the root of the parse
tree (see also the box \Preorder and Postorder Traversals" in Section 2.3.4):

postorder(N) f
for (each child C of N , from the left) postorder(C);
evaluate the attributes associated with node N ;

g

S-attributed de�nitions can be implemented during bottom-up parsing, since
a bottom-up parse corresponds to a postorder traversal. Speci�cally, postorder
corresponds exactly to the order in which an LR parser reduces a production
body to its head. This fact will be used in Section 5.4.2 to evaluate synthesized
attributes and store them on the stack during LR parsing, without creating the
tree nodes explicitly.

5.2.4 L-Attributed De�nitions

The second class of SDD's is called L-attributed de�nitions. The idea behind
this class is that, between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from right to left
(hence \L-attributed"). More precisely, each attribute must be either

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is
a production A ! X1X2 � � �Xn, and that there is an inherited attribute
Xi:a computed by a rule associated with this production. Then the rule
may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated with the occur-
rences of symbols X1; X2; : : : ; Xi�1 located to the left of Xi.

314 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

(c) Inherited or synthesized attributes associated with this occurrence
of Xi itself, but only in such a way that there are no cycles in a
dependency graph formed by the attributes of this Xi.

Example 5.8 : The SDD in Fig. 5.4 is L-attributed. To see why, consider the
semantic rules for inherited attributes, which are repeated here for convenience:

PRODUCTION SEMANTIC RULE

T ! F T 0 T 0:inh = F:val
T 0 ! � F T 0

1 T 0
1:inh = T 0:inh� F:val

The �rst of these rules de�nes the inherited attribute T 0:inh using only F:val,
and F appears to the left of T 0 in the production body, as required. The second
rule de�nes T 0

1:inh using the inherited attribute T
0:inh associated with the head,

and F:val, where F appears to the left of T 0
1 in the production body.

In each of these cases, the rules use information \from above or from the
left," as required by the class. The remaining attributes are synthesized. Hence,
the SDD is L-attributed. 2

Example 5.9 : Any SDD containing the following production and rules cannot
be L-attributed:

PRODUCTION SEMANTIC RULES

A! B C A:s = B:b;
B:i = f(C:c; A:s)

The �rst rule, A:s = B:b, is a legitimate rule in either an S-attributed or L-
attributed SDD. It de�nes a synthesized attribute A:s in terms of an attribute
at a child (that is, a symbol within the production body).

The second rule de�nes an inherited attribute B:i, so the entire SDD cannot
be S-attributed. Further, although the rule is legal, the SDD cannot be L-
attributed, because the attribute C:c is used to help de�ne B:i, and C is to
the right of B in the production body. While attributes at siblings in a parse
tree may be used in L-attributed SDD's, they must be to the left of the symbol
whose attribute is being de�ned. 2

5.2.5 Semantic Rules with Controlled Side E�ects

In practice, translations involve side e�ects: a desk calculator might print a
result; a code generator might enter the type of an identi�er into a symbol table.
With SDD's, we strike a balance between attribute grammars and translation
schemes. Attribute grammars have no side e�ects and allow any evaluation
order consistent with the dependency graph. Translation schemes impose left-
to-right evaluation and allow semantic actions to contain any program fragment;
translation schemes are discussed in Section 5.4.

We shall control side e�ects in SDD's in one of the following ways:

5.2. EVALUATION ORDERS FOR SDD'S 315

� Permit incidental side e�ects that do not constrain attribute evaluation.
In other words, permit side e�ects when attribute evaluation based on any
topological sort of the dependency graph produces a \correct" translation,
where \correct" depends on the application.

� Constrain the allowable evaluation orders, so that the same translation is
produced for any allowable order. The constraints can be thought of as
implicit edges added to the dependency graph.

As an example of an incidental side e�ect, let us modify the desk calculator
of Example 5.1 to print a result. Instead of the rule L:val = E:val, which saves
the result in the synthesized attribute L:val, consider:

PRODUCTION SEMANTIC RULE

1) L! E n print(E:val)

Semantic rules that are executed for their side e�ects, such as print(E:val), will
be treated as the de�nitions of dummy synthesized attributes associated with
the head of the production. The modi�ed SDD produces the same translation
under any topological sort, since the print statement is executed at the end,
after the result is computed into E:val.

Example 5.10 : The SDD in Fig. 5.8 takes a simple declaration D consisting
of a basic type T followed by a list L of identi�ers. T can be int or oat. For
each identi�er on the list, the type is entered into the symbol-table entry for the
identi�er. We assume that entering the type for one identi�er does not a�ect
the symbol-table entry for any other identi�er. Thus, entries can be updated
in any order. This SDD does not check whether an identi�er is declared more
than once; it can be modi�ed to do so.

PRODUCTION SEMANTIC RULES

1) D ! T L L:inh = T:type

2) T ! int T:type = integer

3) T ! oat T:type = oat

4) L! L1 ; id L1:inh = L:inh

addType(id:entry; L:inh)

5) L! id addType(id:entry; L:inh)

Figure 5.8: Syntax-directed de�nition for simple type declarations

Nonterminal D represents a declaration, which, from production 1, consists
of a type T followed by a list L of identi�ers. T has one attribute, T:type, which
is the type in the declaration D. Nonterminal L also has one attribute, which
we call inh to emphasize that it is an inherited attribute. The purpose of L:inh

316 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

is to pass the declared type down the list of identi�ers, so that it can be added
to the appropriate symbol-table entries.

Productions 2 and 3 each evaluate the synthesized attribute T:type, giving
it the appropriate value, integer or oat. This type is passed to the attribute
L:inh in the rule for production 1. Production 4 passes L:inh down the parse
tree. That is, the value L1:inh is computed at a parse-tree node by copying the
value of L:inh from the parent of that node; the parent corresponds to the head
of the production.

Productions 4 and 5 also have a rule in which a function addType is called
with two arguments:

1. id.entry, a lexical value that points to a symbol-table object, and

2. L:inh, the type being assigned to every identi�er on the list.

We suppose that function addType properly installs the type L:inh as the type
of the represented identi�er.

A dependency graph for the input string oat id1 ; id2 ; id3 appears in
Fig. 5.9. Numbers 1 through 10 represent the nodes of the dependency graph.
Nodes 1, 2, and 3 represent the attribute entry associated with each of the
leaves labeled id. Nodes 6, 8, and 10 are the dummy attributes that represent
the application of the function addType to a type and one of these entry values.

inh 5type4

entry

entry

3

1 entry

2

entry

6 entry

7inh 8 entry

9inh 10

D

T

real

L

id3,

L

id2,

L

id1

Figure 5.9: Dependency graph for a declaration oat id1 ; id2 ; id3

Node 4 represents the attribute T:type, and is actually where attribute eval-
uation begins. This type is then passed to nodes 5, 7, and 9 representing L:inh
associated with each of the occurrences of the nonterminal L. 2

5.2. EVALUATION ORDERS FOR SDD'S 317

5.2.6 Exercises for Section 5.2

Exercise 5.2.1 : What are all the topological sorts for the dependency graph
of Fig. 5.7?

Exercise 5.2.2 : For the SDD of Fig. 5.8, give annotated parse trees for the
following expressions:

a) int a, b, c.

b) float w, x, y, z.

Exercise 5.2.3 : Suppose that we have a production A ! BCD. Each of
the four nonterminals A, B, C, and D have two attributes: s is a synthesized
attribute, and i is an inherited attribute. For each of the sets of rules below,
tell whether (i) the rules are consistent with an S-attributed de�nition (ii) the
rules are consistent with an L-attributed de�nition, and (iii) whether the rules
are consistent with any evaluation order at all?

a) A:s = B:i+ C:s.

b) A:s = B:i+ C:s and D:i = A:i+B:s.

c) A:s = B:s+D:s.

! d) A:s = D:i, B:i = A:s+ C:s, C:i = B:s, and D:i = B:i+ C:i.

! Exercise 5.2.4 : This grammar generates binary numbers with a \decimal"
point:

S ! L : L j L
L! L B j B
B ! 0 j 1

Design an L-attributed SDD to compute S:val, the decimal-number value of
an input string. For example, the translation of string 101.101 should be the
decimal number 5.625. Hint : use an inherited attribute L:side that tells which
side of the decimal point a bit is on.

!! Exercise 5.2.5 : Design an S-attributed SDD for the grammar and translation
described in Exercise 5.2.4.

!! Exercise 5.2.6 : Implement Algorithm 3.23, which converts a regular expres-
sion into a nondeterministic �nite automaton, by an L-attributed SDD on a
top-down parsable grammar. Assume that there is a token char representing
any character, and that char.lexval is the character it represents. You may also
assume the existence of a function new() that returns a new state, that is, a
state never before returned by this function. Use any convenient notation to
specify the transitions of the NFA.

318 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

5.3 Applications of Syntax-Directed Translation

The syntax-directed translation techniques in this chapter will be applied in
Chapter 6 to type checking and intermediate-code generation. Here, we consider
selected examples to illustrate some representative SDD's.

The main application in this section is the construction of syntax trees. Since
some compilers use syntax trees as an intermediate representation, a common
form of SDD turns its input string into a tree. To complete the translation to
intermediate code, the compiler may then walk the syntax tree, using another
set of rules that are in e�ect an SDD on the syntax tree rather than the parse
tree. (Chapter 6 also discusses approaches to intermediate-code generation that
apply an SDD without ever constructing a tree explicitly.)

We consider two SDD's for constructing syntax trees for expressions. The
�rst, an S-attributed de�nition, is suitable for use during bottom-up parsing.
The second, L-attributed, is suitable for use during top-down parsing.

The �nal example of this section is an L-attributed de�nition that deals
with basic and array types.

5.3.1 Construction of Syntax Trees

As discussed in Section 2.8.2, each node in a syntax tree represents a construct;
the children of the node represent the meaningful components of the construct.
A syntax-tree node representing an expression E1 + E2 has label + and two
children representing the subexpressions E1 and E2.

We shall implement the nodes of a syntax tree by objects with a suitable
number of �elds. Each object will have an op �eld that is the label of the node.
The objects will have additional �elds as follows:

� If the node is a leaf, an additional �eld holds the lexical value for the leaf.
A constructor function Leaf (op; val) creates a leaf object. Alternatively, if
nodes are viewed as records, then Leaf returns a pointer to a new record
for a leaf.

� If the node is an interior node, there are as many additional �elds as the
node has children in the syntax tree. A constructor function Node takes
two or more arguments: Node(op; c1; c2; : : : ; ck) creates an object with
�rst �eld op and k additional �elds for the k children c1; : : : ; ck.

Example 5.11 : The S-attributed de�nition in Fig. 5.10 constructs syntax
trees for a simple expression grammar involving only the binary operators +
and �. As usual, these operators are at the same precedence level and are
jointly left associative. All nonterminals have one synthesized attribute node,
which represents a node of the syntax tree.

Every time the �rst production E ! E1 + T is used, its rule creates a node
with 0+0 for op and two children, E1:node and T:node, for the subexpressions.
The second production has a similar rule.

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 319

PRODUCTION SEMANTIC RULES

1) E ! E1 + T E:node = new Node(0+0; E1:node; T:node)

2) E ! E1 � T E:node = new Node(0�0; E1:node; T:node)

3) E ! T E:node = T:node

4) T ! (E) T:node = E:node

5) T ! id T:node = new Leaf (id; id:entry)

6) T ! num T:node = new Leaf (num;num:val)

Figure 5.10: Constructing syntax trees for simple expressions

For production 3, E ! T , no node is created, since E:node is the same as
T:node. Similarly, no node is created for production 4, T ! (E). The value
of T:node is the same as E:node, since parentheses are used only for grouping;
they inuence the structure of the parse tree and the syntax tree, but once their
job is done, there is no further need to retain them in the syntax tree.

The last two T -productions have a single terminal on the right. We use the
constructor Leaf to create a suitable node, which becomes the value of T:node.

Figure 5.11 shows the construction of a syntax tree for the input a� 4 + c.
The nodes of the syntax tree are shown as records, with the op �eld �rst.
Syntax-tree edges are now shown as solid lines. The underlying parse tree,
which need not actually be constructed, is shown with dotted edges. The third
type of line, shown dashed, represents the values of E:node and T:node; each
line points to the appropriate syntax-tree node.

At the bottom we see leaves for a, 4 and c, constructed by Leaf. We suppose
that the lexical value id:entry points into the symbol table, and the lexical
value num:val is the numerical value of a constant. These leaves, or pointers
to them, become the value of T:node at the three parse-tree nodes labeled T ,
according to rules 5 and 6. Note that by rule 3, the pointer to the leaf for a is
also the value of E:node for the leftmost E in the parse tree.

Rule 2 causes us to create a node with op equal to the minus sign and
pointers to the �rst two leaves. Then, rule 1 produces the root node of the
syntax tree by combining the node for � with the third leaf.

If the rules are evaluated during a postorder traversal of the parse tree, or
with reductions during a bottom-up parse, then the sequence of steps shown in
Fig. 5.12 ends with p5 pointing to the root of the constructed syntax tree. 2

With a grammar designed for top-down parsing, the same syntax trees are
constructed, using the same sequence of steps, even though the structure of the
parse trees di�ers signi�cantly from that of syntax trees.

Example 5.12 : The L-attributed de�nition in Fig. 5.13 performs the same
translation as the S-attributed de�nition in Fig. 5.10. The attributes for the
grammar symbols E, T , id, and num are as discussed in Example 5.11.

320 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

4

+

id

to entry for c

�

id

to entry for a

num

T.node

E.node

id

T.node+

num

E.node

�

id

T.node

E.node

Figure 5.11: Syntax tree for a� 4 + c

1) p1 = new Leaf (id; entry-a);
2) p2 = new Leaf (num; 4);
3) p3 = new Node(0�0; p1; p2);
4) p4 = new Leaf (id; entry-c);
5) p5 = new Node(0+0; p3; p4);

Figure 5.12: Steps in the construction of the syntax tree for a� 4 + c

The rules for building syntax trees in this example are similar to the rules
for the desk calculator in Example 5.3. In the desk-calculator example, a term
x � y was evaluated by passing x as an inherited attribute, since x and � y
appeared in di�erent portions of the parse tree. Here, the idea is to build a
syntax tree for x + y by passing x as an inherited attribute, since x and + y
appear in di�erent subtrees. Nonterminal E0 is the counterpart of nonterminal
T 0 in Example 5.3. Compare the dependency graph for a � 4 + c in Fig. 5.14
with that for 3 � 5 in Fig. 5.7.

Nonterminal E0 has an inherited attribute inh and a synthesized attribute
syn. Attribute E0:inh represents the partial syntax tree constructed so far.
Speci�cally, it represents the root of the tree for the pre�x of the input string
that is to the left of the subtree for E0. At node 5 in the dependency graph in
Fig. 5.14, E0:inh denotes the root of the partial syntax tree for the identi�er a;
that is, the leaf for a. At node 6, E0:inh denotes the root for the partial syntax

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 321

PRODUCTION SEMANTIC RULES

1) E ! T E0 E:node = E0:syn

E0:inh = T:node

2) E0 ! + T E0
1 E0

1:inh = new Node(0+0; E0:inh; T:node)

E0:syn = E0
1:syn

3) E0 ! � T E0
1 E0

1:inh = new Node(0�0; E0:inh; T:node)

E0:syn = E0
1:syn

4) E0 ! � E0:syn = E0:inh

5) T ! (E) T:node = E:node

6) T ! id T:node = new Leaf (id; id:entry)

7) T ! num T:node = new Leaf (num;num:val)

Figure 5.13: Constructing syntax trees during top-down parsing

syn11inh 6 E0

val

�

3num

node4T

10+ T 8 node

id 7 entry

E09

�

syn
inh

E 13 node

T 2 node

id 1 entry

E05inh 12 syn

Figure 5.14: Dependency graph for a� 4 + c, with the SDD of Fig. 5.13

tree for the input a� 4. At node 9, E0:inh denotes the syntax tree for a� 4+ c.
Since there is no more input, at node 9, E0:inh points to the root of the

entire syntax tree. The syn attributes pass this value back up the parse tree
until it becomes the value of E:node. Speci�cally, the attribute value at node 10
is de�ned by the rule E0:syn = E0:inh associated with the production E0 ! �.
The attribute value at node 11 is de�ned by the rule E0:syn = E0

1:syn associated
with production 2 in Fig. 5.13. Similar rules de�ne the attribute values at
nodes 12 and 13. 2

5.3.2 The Structure of a Type

Inherited attributes are useful when the structure of the parse tree di�ers from
the abstract syntax of the input; attributes can then be used to carry informa-

322 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tion from one part of the parse tree to another. The next example shows how
a mismatch in structure can be due to the design of the language, and not due
to constraints imposed by the parsing method.

Example 5.13 : In C, the type int [2][3] can be read as, \array of 2 arrays
of 3 integers." The corresponding type expression array(2; array(3; integer)) is
represented by the tree in Fig. 5.15. The operator array takes two parameters,
a number and a type. If types are represented by trees, then this operator
returns a tree node labeled array with two children for a number and a type.

array

2 array

3 integer

Figure 5.15: Type expression for int[2][3]

With the SDD in Fig. 5.16, nonterminal T generates either a basic type or
an array type. Nonterminal B generates one of the basic types int and oat.
T generates a basic type when T derives BC and C derives �. Otherwise, C
generates array components consisting of a sequence of integers, each integer
surrounded by brackets.

PRODUCTION SEMANTIC RULES

T ! B C T:t = C:t

C:b = B:t

B ! int B:t = integer

B ! oat B:t = oat

C ! [num] C1 C:t = array (num:val; C1:t)

C1:b = C:b

C ! � C:t = C:b

Figure 5.16: T generates either a basic type or an array type

The nonterminals B and T have a synthesized attribute t representing a
type. The nonterminal C has two attributes: an inherited attribute b and a
synthesized attribute t. The inherited b attributes pass a basic type down the
tree, and the synthesized t attributes accumulate the result.

An annotated parse tree for the input string int [2] [3] is shown in Fig. 5.17.
The corresponding type expression in Fig. 5.15 is constructed by passing the
type integer from B, down the chain of C's through the inherited attributes b.
The array type is synthesized up the chain of C's through the attributes t.

In more detail, at the root for T ! B C, nonterminal C inherits the type
from B, using the inherited attribute C:b. At the rightmost node for C, the

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 323

production is C ! �, so C:t equals C:b. The semantic rules for the production
C ! [num] C1 form C:t by applying the operator array to the operands
num:val and C1:t. 2

C:b = integer

C:t = array(3, integer)

[3
=

]
C:b = integer

C:t integer

�

integer

T:t = array(2, array(3, integer))

B:t =

int

C:b = integer

C:t = array(2, array(3, integer))

[2]

Figure 5.17: Syntax-directed translation of array types

5.3.3 Exercises for Section 5.3

Exercise 5.3.1 : Below is a grammar for expressions involving operator + and
integer or oating-point operands. Floating-point numbers are distinguished
by having a decimal point.

E ! E + T j T
T ! num . num j num

a) Give an SDD to determine the type of each term T and expression E.

b) Extend your SDD of (a) to translate expressions into post�x notation.
Use the unary operator intToFloat to turn an integer into an equivalent
oat.

! Exercise 5.3.2 : Give an SDD to translate in�x expressions with + and � into
equivalent expressions without redundant parentheses. For example, since both
operators associate from the left, and � takes precedence over +, ((a�(b+c))�(d))
translates into a � (b+ c) � d.

! Exercise 5.3.3 : Give an SDD to di�erentiate expressions such as x � (3 � x+
x � x) involving the operators + and �, the variable x, and constants. Assume
that no simpli�cation occurs, so that, for example, 3 � x will be translated into
3 � 1 + 0 � x.

Chapter 6

Intermediate-Code

Generation

In the analysis-synthesis model of a compiler, the front end analyzes a source
program and creates an intermediate representation, from which the back end
generates target code. Ideally, details of the source language are con�ned to the
front end, and details of the target machine to the back end. With a suitably
de�ned intermediate representation, a compiler for language i and machine j
can then be built by combining the front end for language i with the back
end for machine j. This approach to creating suite of compilers can save a
considerable amount of e�ort: m� n compilers can be built by writing just m
front ends and n back ends.

This chapter deals with intermediate representations, static type checking,
and intermediate code generation. For simplicity, we assume that a com-
piler front end is organized as in Fig. 6.1, where parsing, static checking, and
intermediate-code generation are done sequentially; sometimes they can be com-
bined and folded into parsing. We shall use the syntax-directed formalisms of
Chapters 2 and 5 to specify checking and translation. Many of the translation
schemes can be implemented during either bottom-up or top-down parsing, us-
ing the techniques of Chapter 5. All schemes can be implemented by creating
a syntax tree and then walking the tree.

Code

code

intermediate

Generator
Code

Intermediate

Checker

Static

Generator
Parser

front end back end

Figure 6.1: Logical structure of a compiler front end

Static checking includes type checking, which ensures that operators are ap-
plied to compatible operands. It also includes any syntactic checks that remain

357

358 CHAPTER 6. INTERMEDIATE-CODE GENERATION

after parsing. For example, static checking assures that a break-statement in
C is enclosed within a while-, for-, or switch-statement; an error is reported if
such an enclosing statement does not exist.

The approach in this chapter can be used for a wide range of intermediate
representations, including syntax trees and three-address code, both of which
were introduced in Section 2.8. The term \three-address code" comes from
instructions of the general form x = y op z with three addresses: two for the
operands y and z and one for the result x.

In the process of translating a program in a given source language into code
for a given target machine, a compiler may construct a sequence of intermediate
representations, as in Fig. 6.2. High-level representations are close to the source
language and low-level representations are close to the target machine. Syntax
trees are high level; they depict the natural hierarchical structure of the source
program and are well suited to tasks like static type checking.

Code
Target

Representation
Intermediate
Low Level

� � �
Representation
Intermediate
High Level

Program
Source

Figure 6.2: A compiler might use a sequence of intermediate representations

A low-level representation is suitable for machine-dependent tasks like reg-
ister allocation and instruction selection. Three-address code can range from
high- to low-level, depending on the choice of operators. For expressions, the
di�erences between syntax trees and three-address code are super�cial, as we
shall see in Section 6.2.3. For looping statements, for example, a syntax tree
represents the components of a statement, whereas three-address code contains
labels and jump instructions to represent the ow of control, as in machine
language.

The choice or design of an intermediate representation varies from compiler
to compiler. An intermediate representation may either be an actual language
or it may consist of internal data structures that are shared by phases of the
compiler. C is a programming language, yet it is often used as an intermediate
form because it is exible, it compiles into e�cient machine code, and its com-
pilers are widely available. The original C++ compiler consisted of a front end
that generated C, treating a C compiler as a back end.

6.1 Variants of Syntax Trees

Nodes in a syntax tree represent constructs in the source program; the children
of a node represent the meaningful components of a construct. A directed
acyclic graph (hereafter called a DAG) for an expression identi�es the common
subexpressions (subexpressions that occur more than once) of the expression.
As we shall see in this section, DAG's can be constructed by using the same
techniques that construct syntax trees.

6.1. VARIANTS OF SYNTAX TREES 359

6.1.1 Directed Acyclic Graphs for Expressions

Like the syntax tree for an expression, a DAG has leaves corresponding to
atomic operands and interior nodes corresponding to operators. The di�erence
is that a node N in a DAG has more than one parent if N represents a com-
mon subexpression; in a syntax tree, the tree for the common subexpression
would be replicated as many times as the subexpression appears in the original
expression. Thus, a DAG not only represents expressions more succinctly, it
gives the compiler important clues regarding the generation of e�cient code to
evaluate the expressions.

Example 6.1 : Figure 6.3 shows the DAG for the expression

a + a * (b - c) + (b - c) * d

The leaf for a has two parents, because a appears twice in the expression.
More interestingly, the two occurrences of the common subexpression b-c are
represented by one node, the node labeled �. That node has two parents,
representing its two uses in the subexpressions a*(b-c) and (b-c)*d. Even
though b and c appear twice in the complete expression, their nodes each have
one parent, since both uses are in the common subexpression b-c. 2

d

�

cb

+

�a

�

+

Figure 6.3: Dag for the expression a + a * (b - c)+ (b- c) * d

The SDD of Fig. 6.4 can construct either syntax trees or DAG's. It was
used to construct syntax trees in Example 5.11, where functions Leaf and Node
created a fresh node each time they were called. It will construct a DAG if,
before creating a new node, these functions �rst check whether an identical node
already exists. If a previously created identical node exists, the existing node
is returned. For instance, before constructing a new node, Node(op; left; right),
we check whether there is already a node with label op, and children left and
right, in that order. If so, Node returns the existing node; otherwise, it creates
a new node.

Example 6.2 : The sequence of steps shown in Fig. 6.5 constructs the DAG
in Fig. 6.3, provided Node and Leaf return an existing node, if possible, as

360 CHAPTER 6. INTERMEDIATE-CODE GENERATION

PRODUCTION SEMANTIC RULES

1) E ! E1 + T E:node = new Node(0+0; E1:node; T:node)

2) E ! E1 � T E:node = new Node(0�0; E1:node; T:node)

3) E ! T E:node = T:node

4) T ! (E) T:node = E:node

5) T ! id T:node = new Leaf (id; id:entry)

6) T ! num T:node = new Leaf (num;num:val)

Figure 6.4: Syntax-directed de�nition to produce syntax trees or DAG's

1) p1 = Leaf (id; entry-a)
2) p2 = Leaf (id; entry-a) = p1
3) p3 = Leaf (id; entry-b)
4) p4 = Leaf (id; entry-c)
5) p5 = Node(0�0; p3; p4)
6) p6 = Node(0�0; p1; p5)
7) p7 = Node(0+0; p1; p6)
8) p8 = Leaf (id; entry-b) = p3
9) p9 = Leaf (id; entry-c) = p4
10) p10 = Node(0�0; p3; p4) = p5
11) p11 = Leaf (id; entry-d)
12) p12 = Node(0�0; p5; p11)
13) p13 = Node(0+0; p7; p12)

Figure 6.5: Steps for constructing the DAG of Fig. 6.3

discussed above. We assume that entry-a points to the symbol-table entry for
a, and similarly for the other identi�ers.

When the call to Leaf (id; entry-a) is repeated at step 2, the node created
by the previous call is returned, so p2 = p1. Similarly, the nodes returned at
steps 8 and 9 are the same as those returned at steps 3 and 4 (i.e., p8 = p3
and p9 = p4). Hence the node returned at step 10 must be the same at that
returned at step 5; i.e., p10 = p5. 2

6.1.2 The Value-Number Method for Constructing DAG's

Often, the nodes of a syntax tree or DAG are stored in an array of records, as
suggested by Fig. 6.6. Each row of the array represents one record, and therefore
one node. In each record, the �rst �eld is an operation code, indicating the label
of the node. In Fig. 6.6(b), leaves have one additional �eld, which holds the
lexical value (either a symbol-table pointer or a constant, in this case), and

6.1. VARIANTS OF SYNTAX TREES 361

interior nodes have two additional �elds indicating the left and right children.

1=4

21+3

3

5 � � �

10

to entry
for i

(a) DAG (b) Array.

id1

2 num

=

+

i 10

Figure 6.6: Nodes of a DAG for i = i+ 10 allocated in an array

In this array, we refer to nodes by giving the integer index of the record
for that node within the array. This integer historically has been called the
value number for the node or for the expression represented by the node. For
instance, in Fig. 6.6, the node labeled + has value number 3, and its left and
right children have value numbers 1 and 2, respectively. In practice, we could
use pointers to records or references to objects instead of integer indexes, but
we shall still refer to the reference to a node as its \value number." If stored
in an appropriate data structure, value numbers help us construct expression
DAG's e�ciently; the next algorithm shows how.

Suppose that nodes are stored in an array, as in Fig. 6.6, and each node is
referred to by its value number. Let the signature of an interior node be the
triple hop; l; ri, where op is the label, l its left child's value number, and r its
right child's value number. A unary operator may be assumed to have r = 0.

Algorithm 6.3 : The value-number method for constructing the nodes of a
DAG.

INPUT: Label op, node l, and node r.

OUTPUT: The value number of a node in the array with signature hop; l; ri.

METHOD: Search the array for a node M with label op, left child l, and right
child r. If there is such a node, return the value number of M . If not, create in
the array a new node N with label op, left child l, and right child r, and return
its value number. 2

While Algorithm 6.3 yields the desired output, searching the entire array
every time we are asked to locate one node is expensive, especially if the array
holds expressions from an entire program. A more e�cient approach is to use a
hash table, in which the nodes are put into \buckets," each of which typically
will have only a few nodes. The hash table is one of several data structures
that support dictionaries e�ciently.1 A dictionary is an abstract data type that

1See Aho, A. V., J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms,
Addison-Wesley, 1983, for a discussion of data structures supporting dictionaries.

362 CHAPTER 6. INTERMEDIATE-CODE GENERATION

allows us to insert and delete elements of a set, and to determine whether a
given element is currently in the set. A good data structure for dictionaries,
such as a hash table, performs each of these operations in time that is constant
or close to constant, independent of the size of the set.

To construct a hash table for the nodes of a DAG, we need a hash function
h that computes the index of the bucket for a signature hop; l; ri, in a way that
distributes the signatures across buckets, so that it is unlikely that any one
bucket will get much more than a fair share of the nodes. The bucket index
h(op; l; r) is computed deterministically from op, l, and r, so that we may repeat
the calculation and always get to the same bucket index for node hop; l; ri.

The buckets can be implemented as linked lists, as in Fig. 6.7. An array,
indexed by hash value, holds the bucket headers, each of which points to the
�rst cell of a list. Within the linked list for a bucket, each cell holds the value
number of one of the nodes that hash to that bucket. That is, node hop; l; ri
can be found on the list whose header is at index h(op; l; r) of the array.

0

� � �

9 25 3

� � �

20 2
� � �

List elements
representing nodes

Array of bucket
headers indexed
by hash value

Figure 6.7: Data structure for searching buckets

Thus, given the input node op, l, and r, we compute the bucket index
h(op; l; r) and search the list of cells in this bucket for the given input node.
Typically, there are enough buckets so that no list has more than a few cells.
We may need to look at all the cells within a bucket, however, and for each
value number v found in a cell, we must check whether the signature hop; l; ri
of the input node matches the node with value number v in the list of cells (as
in Fig. 6.7). If we �nd a match, we return v. If we �nd no match, we know
no such node can exist in any other bucket, so we create a new cell, add it to
the list of cells for bucket index h(op; l; r), and return the value number in that
new cell.

6.1.3 Exercises for Section 6.1

Exercise 6.1.1 : Construct the DAG for the expression

((x + y)� ((x + y) � (x� y))) + ((x + y) � (x� y))

6.2. THREE-ADDRESS CODE 363

Exercise 6.1.2 : Construct the DAG and identify the value numbers for the
subexpressions of the following expressions, assuming + associates from the left.

a) a+ b+ (a+ b).

b) a+ b+ a+ b.

c) a+ a+
�
a+ a+ a+ (a+ a+ a+ a)

�
.

6.2 Three-Address Code

In three-address code, there is at most one operator on the right side of an
instruction; that is, no built-up arithmetic expressions are permitted. Thus a
source-language expression like x+y*z might be translated into the sequence of
three-address instructions

t1 = y * z

t2 = x + t1

where t1 and t2 are compiler-generated temporary names. This unraveling of
multi-operator arithmetic expressions and of nested ow-of-control statements
makes three-address code desirable for target-code generation and optimization,
as discussed in Chapters 8 and 9. The use of names for the intermediate values
computed by a program allows three-address code to be rearranged easily.

Example 6.4 : Three-address code is a linearized representation of a syntax
tree or a DAG in which explicit names correspond to the interior nodes of the
graph. The DAG in Fig. 6.3 is repeated in Fig. 6.8, together with a correspond-
ing three-address code sequence. 2

a + t2=t3

t2 a * t1=

=

t4 = t1 * d

t5 t3 + t4

(a) DAG (b) Three-address code

b - c=t1

d

�

cb

�

�

+

+

a

Figure 6.8: A DAG and its corresponding three-address code

364 CHAPTER 6. INTERMEDIATE-CODE GENERATION

6.2.1 Addresses and Instructions

Three-address code is built from two concepts: addresses and instructions. In
object-oriented terms, these concepts correspond to classes, and the various
kinds of addresses and instructions correspond to appropriate subclasses. Al-
ternatively, three-address code can be implemented using records with �elds
for the addresses; records called quadruples and triples are discussed briey in
Section 6.2.2.

An address can be one of the following:

� A name. For convenience, we allow source-program names to appear as
addresses in three-address code. In an implementation, a source name
is replaced by a pointer to its symbol-table entry, where all information
about the name is kept.

� A constant. In practice, a compiler must deal with many di�erent types
of constants and variables. Type conversions within expressions are con-
sidered in Section 6.5.2.

� A compiler-generated temporary. It is useful, especially in optimizing com-
pilers, to create a distinct name each time a temporary is needed. These
temporaries can be combined, if possible, when registers are allocated to
variables.

We now consider the common three-address instructions used in the rest of
this book. Symbolic labels will be used by instructions that alter the ow of
control. A symbolic label represents the index of a three-address instruction in
the sequence of instructions. Actual indexes can be substituted for the labels,
either by making a separate pass or by \backpatching," discussed in Section 6.7.
Here is a list of the common three-address instruction forms:

1. Assignment instructions of the form x = y op z, where op is a binary
arithmetic or logical operation, and x, y, and z are addresses.

2. Assignments of the form x = op y, where op is a unary operation. Essential
unary operations include unary minus, logical negation, and conversion
operators that, for example, convert an integer to a oating-point number.

3. Copy instructions of the form x = y, where x is assigned the value of y.

4. An unconditional jump goto L. The three-address instruction with label
L is the next to be executed.

5. Conditional jumps of the form if x goto L and ifFalse x goto L. These
instructions execute the instruction with label L next if x is true and
false, respectively. Otherwise, the following three-address instruction in
sequence is executed next, as usual.

6.2. THREE-ADDRESS CODE 365

6. Conditional jumps such as if x relop y goto L, which apply a relational
operator (<, ==, >=, etc.) to x and y, and execute the instruction with
label L next if x stands in relation relop to y. If not, the three-address
instruction following if x relop y goto L is executed next, in sequence.

7. Procedure calls and returns are implemented using the following instruc-
tions: param x for parameters; call p,n and y = call p,n for procedure
and function calls, respectively; and return y, where y, representing a
returned value, is optional. Their typical use is as the sequence of three-
address instructions

param x1
param x2
� � �
param xn
call p,n

generated as part of a call of the procedure p(x1; x2; : : : ; xn). The in-
teger n, indicating the number of actual parameters in \call p,n," is
not redundant because calls can be nested. That is, some of the �rst
param statements could be parameters of a call that comes after p returns
its value; that value becomes another parameter of the later call. The
implementation of procedure calls is outlined in Section 6.9.

8. Indexed copy instructions of the form x = y[i] and x[i]= y. The instruc-
tion x = y[i] sets x to the value in the location i memory units beyond
location y. The instruction x[i]= y sets the contents of the location i
units beyond x to the value of y.

9. Address and pointer assignments of the form x = & y, x = * y, and *x = y.
The instruction x = & y sets the r-value of x to be the location (l-value)
of y.2 Presumably y is a name, perhaps a temporary, that denotes an
expression with an l-value such as A[i][j], and x is a pointer name or
temporary. In the instruction x = * y, presumably y is a pointer or a
temporary whose r-value is a location. The r-value of x is made equal
to the contents of that location. Finally, *x = y sets the r-value of the
object pointed to by x to the r-value of y.

Example 6.5 : Consider the statement

do i = i+1; while (a[i] < v);

Two possible translations of this statement are shown in Fig. 6.9. The trans-
lation in Fig. 6.9(a) uses a symbolic label L, attached to the �rst instruction.

2From Section 2.8.3, l- and r-values are appropriate on the left and right sides of assign-
ments, respectively.

366 CHAPTER 6. INTERMEDIATE-CODE GENERATION

The translation in (b) shows position numbers for the instructions, starting
arbitrarily at position 100. In both translations, the last instruction is a condi-
tional jump to the �rst instruction. The multiplication i *8 is appropriate for
an array of elements that each take 8 units of space. 2

L: t1 = i + 1 100: t1 = i + 1

i = t1 101: i = t1
t2 = i * 8 102: t2 = i * 8

t3 = a [t2] 103: t3 = a [t2]

if t3 < v goto L 104: if t3 < v goto 100

(a) Symbolic labels. (b) Position numbers.

Figure 6.9: Two ways of assigning labels to three-address statements

The choice of allowable operators is an important issue in the design of an
intermediate form. The operator set clearly must be rich enough to implement
the operations in the source language. Operators that are close to machine
instructions make it easier to implement the intermediate form on a target
machine. However, if the front end must generate long sequences of instructions
for some source-language operations, then the optimizer and code generator
may have to work harder to rediscover the structure and generate good code
for these operations.

6.2.2 Quadruples

The description of three-address instructions speci�es the components of each
type of instruction, but it does not specify the representation of these instruc-
tions in a data structure. In a compiler, these instructions can be implemented
as objects or as records with �elds for the operator and the operands. Three
such representations are called \quadruples," \triples," and \indirect triples."

A quadruple (or just \quad") has four �elds, which we call op, arg1, arg2,
and result. The op �eld contains an internal code for the operator. For instance,
the three-address instruction x = y + z is represented by placing + in op, y in
arg1, z in arg2, and x in result. The following are some exceptions to this rule:

1. Instructions with unary operators like x = minusy or x = y do not use
arg2. Note that for a copy statement like x = y, op is =, while for most
other operations, the assignment operator is implied.

2. Operators like param use neither arg2 nor result.

3. Conditional and unconditional jumps put the target label in result.

Example 6.6 : Three-address code for the assignment a = b * - c + b * - c ;

appears in Fig. 6.10(a). The special operator minus is used to distinguish the

6.2. THREE-ADDRESS CODE 367

unary minus operator, as in -c, from the binary minus operator, as in b-c.
Note that the unary-minus \three-address" statement has only two addresses,
as does the copy statement a = t5.

The quadruples in Fig. 6.10(b) implement the three-address code in (a). 2

t2+4

t4t3b*3

t3cminus2

t2t1b*

t4

(b) Quadruples(a) Three-address code

resultarg
2

arg
1

op

� � �

at5=5

t5

1t2

minus c=t1

=

t1cminus0

t5=a

t2 + t4=t5

b * t3=t4

minus c=t3

b * t1

Figure 6.10: Three-address code and its quadruple representation

For readability, we use actual identi�ers like a, b, and c in the �elds arg1,
arg2, and result in Fig. 6.10(b), instead of pointers to their symbol-table entries.
Temporary names can either by entered into the symbol table like programmer-
de�ned names, or they can be implemented as objects of a class Temp with its
own methods.

6.2.3 Triples

A triple has only three �elds, which we call op, arg1, and arg2. Note that
the result �eld in Fig. 6.10(b) is used primarily for temporary names. Using
triples, we refer to the result of an operation x op y by its position, rather
than by an explicit temporary name. Thus, instead of the temporary t1 in
Fig. 6.10(b), a triple representation would refer to position (0). Parenthesized
numbers represent pointers into the triple structure itself. In Section 6.1.2,
positions or pointers to positions were called value numbers.

Triples are equivalent to signatures in Algorithm 6.3. Hence, the DAG and
triple representations of expressions are equivalent. The equivalence ends with
expressions, since syntax-tree variants and three-address code represent control
ow quite di�erently.

Example 6.7 : The syntax tree and triples in Fig. 6.11 correspond to the
three-address code and quadruples in Fig. 6.10. In the triple representation in
Fig. 6.11(b), the copy statement a = t5 is encoded in the triple representation
by placing a in the arg1 �eld and (4) in the arg2 �eld. 2

A ternary operation like x[i] = y requires two entries in the triple structure;
for example, we can put x and i in one triple and y in the next. Similarly,
x = y[i] can implemented by treating it as if it were the two instructions

368 CHAPTER 6. INTERMEDIATE-CODE GENERATION

Why Do We Need Copy Instructions?

A simple algorithm for translating expressions generates copy instructions
for assignments, as in Fig. 6.10(a), where we copy t5 into a rather than
assigning t2 + t4 to a directly. Each subexpression typically gets its own,
new temporary to hold its result, and only when the assignment operator =
is processed do we learn where to put the value of the complete expression.
A code-optimization pass, perhaps using the DAG of Section 6.1.1 as an
intermediate form, can discover that t5 can be replaced by a.

(1)+4

(2)b*

(0)

3

cminus2

b

op

(3)

5 = a (4)

� � �

arg
1

arg
2

(a) Syntax tree (b) Triples

0 minus c

1 *

c

a

=

+

�

b minus

�

b minus

c

Figure 6.11: Representations of a = b * - c + b * - c ;

t = y[i] and x = t, where t is a compiler-generated temporary. Note that the
temporary t does not actually appear in a triple, since temporary values are
referred to by their position in the triple structure.

A bene�t of quadruples over triples can be seen in an optimizing compiler,
where instructions are often moved around. With quadruples, if we move an
instruction that computes a temporary t, then the instructions that use t require
no change. With triples, the result of an operation is referred to by its position,
so moving an instruction may require us to change all references to that result.
This problem does not occur with indirect triples, which we consider next.

Indirect triples consist of a listing of pointers to triples, rather than a listing
of triples themselves. For example, let us use an array instruction to list pointers
to triples in the desired order. Then, the triples in Fig. 6.11(b) might be
represented as in Fig. 6.12.

With indirect triples, an optimizing compiler can move an instruction by
reordering the instruction list, without a�ecting the triples themselves. When
implemented in Java, an array of instruction objects is analogous to an indi-
rect triple representation, since Java treats the array elements as references to
objects.

6.2. THREE-ADDRESS CODE 369

b*3

cminus2

(0)b*1

cminus0

instruction

(2)

arg
2

arg
1

op

� � �

(4)a=5

(3)(1)+4

� � �

(5)40

(4)39

(3)38

(2)37

(1)36

(0)35

Figure 6.12: Indirect triples representation of three-address code

6.2.4 Static Single-Assignment Form

Static single-assignment form (SSA) is an intermediate representation that fa-
cilitates certain code optimizations. Two distinctive aspects distinguish SSA
from three-address code. The �rst is that all assignments in SSA are to vari-
ables with distinct names; hence the term static single-assigment. Figure 6.13
shows the same intermediate program in three-address code and in static single-
assignment form. Note that subscripts distinguish each de�nition of variables
p and q in the SSA representation.

p = a + b p1 = a + b

q = p - c q1 = p1 - c

p = q * d p2 = q1 * d

p = e - p p3 = e - p2
q = p + q q2 = p3 + q1

(a) Three-address code. (b) Static single-assignment form.

Figure 6.13: Intermediate program in three-address code and SSA

The same variable may be de�ned in two di�erent control-ow paths in a
program. For example, the source program

if (flag) x = -1; else x = 1;

y = x * a;

has two control-ow paths in which the variable x gets de�ned. If we use
di�erent names for x in the true part and the false part of the conditional
statement, then which name should we use in the assignment y = x * a? Here
is where the second distinctive aspect of SSA comes into play. SSA uses a
notational convention called the �-function to combine the two de�nitions of x:

if (flag) x1 = -1; else x2 = 1;

x3 = �(x1; x2);

370 CHAPTER 6. INTERMEDIATE-CODE GENERATION

Here, �(x1; x2) has the value x1 if the control ow passes through the true
part of the conditional and the value x2 if the control ow passes through the
false part. That is to say, the �-function returns the value of its argument that
corresponds to the control-ow path that was taken to get to the assignment-
statement containing the �-function.

6.2.5 Exercises for Section 6.2

Exercise 6.2.1 : Translate the arithmetic expression a+�(b+ c) into:

a) A syntax tree.

b) Quadruples.

c) Triples.

d) Indirect triples.

Exercise 6.2.2 : Repeat Exercise 6.2.1 for the following assignment state-
ments:

i. a = b[i] + c[j].

ii. a[i] = b*c - b*d.

iii. x = f(y+1) + 2.

iv. x = *p + &y.

! Exercise 6.2.3 : Show how to transform a three-address code sequence into
one in which each de�ned variable gets a unique variable name.

6.3 Types and Declarations

The applications of types can be grouped under checking and translation:

� Type checking uses logical rules to reason about the behavior of a program
at run time. Speci�cally, it ensures that the types of the operands match
the type expected by an operator. For example, the && operator in Java
expects its two operands to be booleans; the result is also of type boolean.

� Translation Applications. From the type of a name, a compiler can de-
termine the storage that will be needed for that name at run time. Type
information is also needed to calculate the address denoted by an array
reference, to insert explicit type conversions, and to choose the right ver-
sion of an arithmetic operator, among other things.

Chapter 8

Code Generation

The �nal phase in our compiler model is the code generator. It takes as input
the intermediate representation (IR) produced by the front end of the com-
piler, along with relevant symbol table information, and produces as output a
semantically equivalent target program, as shown in Fig. 8.1.

The requirements imposed on a code generator are severe. The target pro-
gram must preserve the semantic meaning of the source program and be of
high quality; that is, it must make e�ective use of the available resources of the
target machine. Moreover, the code generator itself must run e�ciently.

The challenge is that, mathematically, the problem of generating an optimal
target program for a given source program is undecidable; many of the subprob-
lems encountered in code generation such as register allocation are computa-
tionally intractable. In practice, we must be content with heuristic techniques
that generate good, but not necessarily optimal, code. Fortunately, heuristics
have matured enough that a carefully designed code generator can produce code
that is several times faster than code produced by a naive one.

Compilers that need to produce e�cient target programs, include an op-
timization phase prior to code generation. The optimizer maps the IR into
IR from which more e�cient code can be generated. In general, the code-
optimization and code-generation phases of a compiler, often referred to as the
back end, may make multiple passes over the IR before generating the target
program. Code optimization is discussed in detail in Chapter 9. The tech-
niques presented in this chapter can be used whether or not an optimization
phase occurs before code generation.

A code generator has three primary tasks: instruction selection, register

program
target

Generator

Code

code
intermediate

Optimizer

Code

code
intermediate

End
Front

program
source

Figure 8.1: Position of code generator

505

506 CHAPTER 8. CODE GENERATION

allocation and assignment, and instruction ordering. The importance of these
tasks is outlined in Section 8.1. Instruction selection involves choosing appro-
priate target-machine instructions to implement the IR statements. Register
allocation and assignment involves deciding what values to keep in which reg-
isters. Instruction ordering involves deciding in what order to schedule the
execution of instructions.

This chapter presents algorithms that code generators can use to trans-
late the IR into a sequence of target language instructions for simple register
machines. The algorithms will be illustrated by using the machine model in Sec-
tion 8.2. Chapter 10 covers the problem of code generation for complex modern
machines that support a great deal of parallelism within a single instruction.

After discussing the broad issues in the design of a code generator, we show
what kind of target code a compiler needs to generate to support the abstrac-
tions embodied in a typical source language. In Section 8.3, we outline imple-
mentations of static and stack allocation of data areas, and show how names in
the IR can be converted into addresses in the target code.

Many code generators partition IR instructions into \basic blocks," which
consist of sequences of instructions that are always executed together. The
partitioning of the IR into basic blocks is the subject of Section 8.4. The
following section presents simple local transformations that can be used to
transform basic blocks into modi�ed basic blocks from which more e�cient
code can be generated. These transformations are a rudimentary form of code
optimization, although the deeper theory of code optimization will not be taken
up until Chapter 9. An example of a useful, local transformation is the discovery
of common subexpressions at the level of intermediate code and the resultant
replacement of arithmetic operations by simpler copy operations.

Section 8.6 presents a simple code-generation algorithm that generates code
for each statement in turn, keeping operands in registers as long as possible.
The output of this kind of code generator can be readily improved by peephole
optimization techniques such as those discussed in the following Section 8.7.

The remaining sections explore instruction selection and register allocation.

8.1 Issues in the Design of a Code Generator

While the details are dependent on the speci�cs of the intermediate represen-
tation, the target language, and the run-time system, tasks such as instruction
selection, register allocation and assignment, and instruction ordering are en-
countered in the design of almost all code generators.

The most important criterion for a code generator is that it produce cor-
rect code. Correctness takes on special signi�cance because of the number of
special cases that a code generator might face. Given the premium on correct-
ness, designing a code generator so it can be easily implemented, tested, and
maintained is an important design goal.

8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 507

8.1.1 Input to the Code Generator

The input to the code generator is the intermediate representation of the source
program produced by the front end, along with information in the symbol table
that is used to determine the run-time addresses of the data objects denoted
by the names in the IR.

The many choices for the IR include three-address representations such as
quadruples, triples, indirect triples; virtual machine representations such as
bytecodes and stack-machine code; linear representations such as post�x no-
tation; and graphical representations such as syntax trees and DAG's. Many
of the algorithms in this chapter are couched in terms of the representations
considered in Chapter 6: three-address code, trees, and DAG's. The techniques
we discuss can be applied, however, to the other intermediate representations
as well.

In this chapter, we assume that the front end has scanned, parsed, and
translated the source program into a relatively low-level IR, so that the values
of the names appearing in the IR can be represented by quantities that the
target machine can directly manipulate, such as integers and oating-point
numbers. We also assume that all syntactic and static semantic errors have
been detected, that the necessary type checking has taken place, and that type-
conversion operators have been inserted wherever necessary. The code generator
can therefore proceed on the assumption that its input is free of these kinds of
errors.

8.1.2 The Target Program

The instruction-set architecture of the target machine has a signi�cant im-
pact on the di�culty of constructing a good code generator that produces
high-quality machine code. The most common target-machine architectures
are RISC (reduced instruction set computer), CISC (complex instruction set
computer), and stack based.

A RISC machine typically has many registers, three-address instructions,
simple addressing modes, and a relatively simple instruction-set architecture.
In contrast, a CISC machine typically has few registers, two-address instruc-
tions, a variety of addressing modes, several register classes, variable-length
instructions, and instructions with side e�ects.

In a stack-based machine, operations are done by pushing operands onto a
stack and then performing the operations on the operands at the top of the
stack. To achieve high performance the top of the stack is typically kept in
registers. Stack-based machines almost disappeared because it was felt that
the stack organization was too limiting and required too many swap and copy
operations.

However, stack-based architectures were revived with the introduction of
the Java Virtual Machine (JVM). The JVM is a software interpreter for Java
bytecodes, an intermediate language produced by Java compilers. The inter-

508 CHAPTER 8. CODE GENERATION

preter provides software compatibility across multiple platforms, a major factor
in the success of Java.

To overcome the high performance penalty of interpretation, which can be
on the order of a factor of 10, just-in-time (JIT) Java compilers have been
created. These JIT compilers translate bytecodes during run time to the native
hardware instruction set of the target machine. Another approach to improving
Java performance is to build a compiler that compiles directly into the machine
instructions of the target machine, bypassing the Java bytecodes entirely.

Producing an absolute machine-language program as output has the ad-
vantage that it can be placed in a �xed location in memory and immediately
executed. Programs can be compiled and executed quickly.

Producing a relocatable machine-language program (often called an object
module) as output allows subprograms to be compiled separately. A set of
relocatable object modules can be linked together and loaded for execution by a
linking loader. Although we must pay the added expense of linking and loading
if we produce relocatable object modules, we gain a great deal of exibility
in being able to compile subroutines separately and to call other previously
compiled programs from an object module. If the target machine does not
handle relocation automatically, the compiler must provide explicit relocation
information to the loader to link the separately compiled program modules.

Producing an assembly-language program as output makes the process of
code generation somewhat easier. We can generate symbolic instructions and
use the macro facilities of the assembler to help generate code. The price paid
is the assembly step after code generation.

In this chapter, we shall use a very simple RISC-like computer as our target
machine. We add to it some CISC-like addressing modes so that we can also
discuss code-generation techniques for CISC machines. For readability, we use
assembly code as the target language. As long as addresses can be calculated
from o�sets and other information stored in the symbol table, the code gener-
ator can produce relocatable or absolute addresses for names just as easily as
symbolic addresses.

8.1.3 Instruction Selection

The code generator must map the IR program into a code sequence that can be
executed by the target machine. The complexity of performing this mapping is
determined by factors such as

� the level of the IR

� the nature of the instruction-set architecture

� the desired quality of the generated code.

If the IR is high level, the code generator may translate each IR statement
into a sequence of machine instructions using code templates. Such statement-
by-statement code generation, however, often produces poor code that needs

8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 509

further optimization. If the IR reects some of the low-level details of the un-
derlying machine, then the code generator can use this information to generate
more e�cient code sequences.

The nature of the instruction set of the target machine has a strong e�ect
on the di�culty of instruction selection. For example, the uniformity and com-
pleteness of the instruction set are important factors. If the target machine
does not support each data type in a uniform manner, then each exception to
the general rule requires special handling. On some machines, for example,
oating-point operations are done using separate registers.

Instruction speeds and machine idioms are other important factors. If we
do not care about the e�ciency of the target program, instruction selection is
straightforward. For each type of three-address statement, we can design a code
skeleton that de�nes the target code to be generated for that construct. For
example, every three-address statement of the form x = y + z, where x, y, and z

are statically allocated, can be translated into the code sequence

LD R0, y // R0 = y (load y into register R0)
ADD R0, R0, z // R0 = R0 + z (add z to R0)
ST x, R0 // x = R0 (store R0 into x)

This strategy often produces redundant loads and stores. For example, the
sequence of three-address statements

a = b + c

d = a + e

would be translated into

LD R0, b // R0 = b

ADD R0, R0, c // R0 = R0 + c

ST a, R0 // a = R0

LD R0, a // R0 = a

ADD R0, R0, e // R0 = R0 + e

ST d, R0 // d = R0

Here, the fourth statement is redundant since it loads a value that has just been
stored, and so is the third if a is not subsequently used.

The quality of the generated code is usually determined by its speed and
size. On most machines, a given IR program can be implemented by many
di�erent code sequences, with signi�cant cost di�erences between the di�erent
implementations. A naive translation of the intermediate code may therefore
lead to correct but unacceptably ine�cient target code.

For example, if the target machine has an \increment" instruction (INC),
then the three-address statement a = a + 1 may be implemented more e�ciently
by the single instruction INC a, rather than by a more obvious sequence that
loads a into a register, adds one to the register, and then stores the result back
into a:

510 CHAPTER 8. CODE GENERATION

LD R0, a // R0 = a

ADD R0, R0, #1 // R0 = R0 + 1

ST a, R0 // a = R0

We need to know instruction costs in order to design good code sequences
but, unfortunately, accurate cost information is often di�cult to obtain. De-
ciding which machine-code sequence is best for a given three-address construct
may also require knowledge about the context in which that construct appears.

In Section 8.9 we shall see that instruction selection can be modeled as a
tree-pattern matching process in which we represent the IR and the machine
instructions as trees. We then attempt to \tile" an IR tree with a set of sub-
trees that correspond to machine instructions. If we associate a cost with each
machine-instruction subtree, we can use dynamic programming to generate op-
timal code sequences. Dynamic programming is discussed in Section 8.11.

8.1.4 Register Allocation

A key problem in code generation is deciding what values to hold in what
registers. Registers are the fastest computational unit on the target machine,
but we usually do not have enough of them to hold all values. Values not held
in registers need to reside in memory. Instructions involving register operands
are invariably shorter and faster than those involving operands in memory, so
e�cient utilization of registers is particularly important.

The use of registers is often subdivided into two subproblems:

1. Register allocation, during which we select the set of variables that will
reside in registers at each point in the program.

2. Register assignment, during which we pick the speci�c register that a
variable will reside in.

Finding an optimal assignment of registers to variables is di�cult, even
with single-register machines. Mathematically, the problem is NP-complete.
The problem is further complicated because the hardware and/or the operating
system of the target machine may require that certain register-usage conventions
be observed.

Example 8.1 : Certain machines require register-pairs (an even and next odd-
numbered register) for some operands and results. For example, on some ma-
chines, integer multiplication and integer division involve register pairs. The
multiplication instruction is of the form

M x, y

where x, the multiplicand, is the odd register of an even/odd register pair and
y, the multiplier, can be anywhere. The product occupies the entire even/odd
register pair. The division instruction is of the form

8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 511

D x, y

where the dividend occupies an even/odd register pair whose even register is x;
the divisor is y. After division, the even register holds the remainder and the
odd register the quotient.

Now, consider the two three-address code sequences in Fig. 8.2 in which the
only di�erence in (a) and (b) is the operator in the second statement. The
shortest assembly-code sequences for (a) and (b) are given in Fig. 8.3.

t = a + b t = a + b

t = t * c t = t + c

t = t / d t = t / d

(a) (b)

Figure 8.2: Two three-address code sequences

L R1,a L R0, a

A R1,b A R0, b

M R0,c A R0, c

D R0,d SRDA R0, 32

ST R1,t D R0, d

ST R1, t

(a) (b)

Figure 8.3: Optimal machine-code sequences

Ri stands for register i. SRDA stands for Shift-Right-Double-Arithmetic and
SRDA R0,32 shifts the dividend into R1 and clears R0 so all bits equal its sign
bit. L, ST, and A stand for load, store, and add, respectively. Note that the
optimal choice for the register into which a is to be loaded depends on what
will ultimately happen to t. 2

Strategies for register allocation and assignment are discussed in Section 8.8.
Section 8.10 shows that for certain classes of machines we can construct code
sequences that evaluate expressions using as few registers as possible.

8.1.5 Evaluation Order

The order in which computations are performed can a�ect the e�ciency of the
target code. As we shall see, some computation orders require fewer registers
to hold intermediate results than others. However, picking a best order in
the general case is a di�cult NP-complete problem. Initially, we shall avoid

512 CHAPTER 8. CODE GENERATION

the problem by generating code for the three-address statements in the order
in which they have been produced by the intermediate code generator. In
Chapter 10, we shall study code scheduling for pipelined machines that can
execute several operations in a single clock cycle.

8.2 The Target Language

Familiarity with the target machine and its instruction set is a prerequisite
for designing a good code generator. Unfortunately, in a general discussion of
code generation it is not possible to describe any target machine in su�cient
detail to generate good code for a complete language on that machine. In
this chapter, we shall use as a target language assembly code for a simple
computer that is representative of many register machines. However, the code-
generation techniques presented in this chapter can be used on many other
classes of machines as well.

8.2.1 A Simple Target Machine Model

Our target computer models a three-address machine with load and store oper-
ations, computation operations, jump operations, and conditional jumps. The
underlying computer is a byte-addressable machine with n general-purpose reg-
isters, R0; R1; : : : ; Rn � 1. A full-edged assembly language would have scores
of instructions. To avoid hiding the concepts in a myriad of details, we shall
use a very limited set of instructions and assume that all operands are integers.
Most instructions consists of an operator, followed by a target, followed by a
list of source operands. A label may precede an instruction. We assume the
following kinds of instructions are available:

� Load operations: The instruction LD dst, addr loads the value in location
addr into location dst. This instruction denotes the assignment dst = addr.
The most common form of this instruction is LD r; x which loads the value
in location x into register r. An instruction of the form LD r1; r2 is a
register-to-register copy in which the contents of register r2 are copied
into register r1.

� Store operations: The instruction ST x; r stores the value in register r into
the location x. This instruction denotes the assignment x = r.

� Computation operations of the form OP dst; src1; src2, where OP is a op-
erator like ADD or SUB, and dst, src1, and src2 are locations, not necessarily
distinct. The e�ect of this machine instruction is to apply the operation
represented by OP to the values in locations src1 and src2, and place the
result of this operation in location dst. For example, SUB r1; r2; r3 com-
putes r1 = r2 � r3. Any value formerly stored in r1 is lost, but if r1 is
r2 or r3, the old value is read �rst. Unary operators that take only one
operand do not have a src2.

8.2. THE TARGET LANGUAGE 513

� Unconditional jumps: The instruction BR L causes control to branch to
the machine instruction with label L. (BR stands for branch.)

� Conditional jumps of the form Bcond r; L, where r is a register, L is a label,
and cond stands for any of the common tests on values in the register r.
For example, BLTZ r; L causes a jump to label L if the value in register r is
less than zero, and allows control to pass to the next machine instruction
if not.

We assume our target machine has a variety of addressing modes:

� In instructions, a location can be a variable name x referring to the mem-
ory location that is reserved for x (that is, the l-value of x).

� A location can also be an indexed address of the form a(r), where a is
a variable and r is a register. The memory location denoted by a(r) is
computed by taking the l-value of a and adding to it the value in register
r. For example, the instruction LD R1, a(R2) has the e�ect of setting
R1 = contents(a+ contents(R2)), where contents(x) denotes the contents
of the register or memory location represented by x. This addressing
mode is useful for accessing arrays, where a is the base address of the
array (that is, the address of the �rst element), and r holds the number
of bytes past that address we wish to go to reach one of the elements of
array a.

� A memory location can be an integer indexed by a register. For ex-
ample, LD R1,100(R2) has the e�ect of setting R1 = contents(100 +
contents(R2)), that is, of loading into R1 the value in the memory loca-
tion obtained by adding 100 to the contents of register R2. This feature
is useful for following pointers, as we shall see in the example below.

� We also allow two indirect addressing modes: *r means the memory lo-
cation found in the location represented by the contents of register r and
*100(r) means the memory location found in the location obtained by
adding 100 to the contents of r. For example, LD R1,*100(R2) has the
e�ect of setting R1 = contents(contents(100 + contents(R2))), that is, of
loading into R1 the value in the memory location stored in the memory
location obtained by adding 100 to the contents of register R2.

� Finally, we allow an immediate constant addressing mode. The constant
is pre�xed by #. The instruction LD R1, #100 loads the integer 100 into
register R1, and ADD R1, R1,#100 adds the integer 100 into register R1.

Comments at the end of instructions are preceded by //.

Example 8.2 : The three-address statement x = y - z can be implemented by
the machine instructions:

514 CHAPTER 8. CODE GENERATION

LD R1, y // R1 = y

LD R2, z // R2 = z

SUB R1, R1, R2 // R1 = R1 - R2

ST x, R1 // x = R1

We can do better, perhaps. One of the goals of a good code-generation algorithm
is to avoid using all four of these instructions, whenever possible. For example,
y and/or z may have been computed in a register, and if so we can avoid the LD
step(s). Likewise, we might be able to avoid ever storing x if its value is used
within the register set and is not subsequently needed.

Suppose a is an array whose elements are 8-byte values, perhaps real num-
bers. Also assume elements of a are indexed starting at 0. We may execute the
three-address instruction b = a[i] by the machine instructions:

LD R1, i // R1 = i

MUL R1, R1, 8 // R1 = R1 * 8

LD R2, a(R1) // R2 = contents(a + contents(R1))

ST b, R2 // b = R2

That is, the second step computes 8i, and the third step places in register R2
the value in the ith element of a | the one found in the location that is 8i
bytes past the base address of the array a.

Similarly, the assignment into the array a represented by three-address in-
struction a[j] = c is implemented by:

LD R1, c // R1 = c

LD R2, j // R2 = j

MUL R2, R2, 8 // R2 = R2 * 8

ST a(R2), R1 // contents(a + contents(R2)) = R1

To implement a simple pointer indirection, such as the three-address state-
ment x = *p, we can use machine instructions like:

LD R1, p // R1 = p

LD R2, 0(R1) // R2 = contents(0 + contents(R1))

ST x, R2 // x = R2

The assignment through a pointer *p = y is similarly implemented in machine
code by:

LD R1, p // R1 = p

LD R2, y // R2 = y

ST 0(R1), R2 // contents(0 + contents(R1)) = R2

Finally, consider a conditional-jump three-address instruction like

if x < y goto L

8.2. THE TARGET LANGUAGE 515

The machine-code equivalent would be something like:

LD R1, x // R1 = x

LD R2, y // R2 = y

SUB R1, R1, R2 // R1 = R1 - R2

BLTZ R1, M // if R1 < 0 jump to M

Here, M is the label that represents the �rst machine instruction generated from
the three-address instruction that has label L. As for any three-address instruc-
tion, we hope that we can save some of these machine instructions because the
needed operands are already in registers or because the result need never be
stored. 2

8.2.2 Program and Instruction Costs

We often associate a cost with compiling and running a program. Depending
on what aspect of a program we are interested in optimizing, some common
cost measures are the length of compilation time and the size, running time
and power consumption of the target program.

Determining the actual cost of compiling and running a program is a com-
plex problem. Finding an optimal target program for a given source program is
an undecidable problem in general, and many of the subproblems involved are
NP-hard. As we have indicated, in code generation we must often be content
with heuristic techniques that produce good but not necessarily optimal target
programs.

For the remainder of this chapter, we shall assume each target-language
instruction has an associated cost. For simplicity, we take the cost of an in-
struction to be one plus the costs associated with the addressing modes of the
operands. This cost corresponds to the length in words of the instruction.
Addressing modes involving registers have zero additional cost, while those in-
volving a memory location or constant in them have an additional cost of one,
because such operands have to be stored in the words following the instruction.
Some examples:

� The instruction LD R0, R1 copies the contents of register R1 into register
R0. This instruction has a cost of one because no additional memory
words are required.

� The instruction LD R0, M loads the contents of memory location M into
register R0. The cost is two since the address of memory location M is in
the word following the instruction.

� The instruction LD R1, *100(R2) loads into register R1 the value given
by contents(contents(100 + contents(R2))). The cost is two because the
constant 100 is stored in the word following the instruction.

516 CHAPTER 8. CODE GENERATION

In this chapter we assume the cost of a target-language program on a given
input is the sum of costs of the individual instructions executed when the pro-
gram is run on that input. Good code-generation algorithms seek to minimize
the sum of the costs of the instructions executed by the generated target pro-
gram on typical inputs. We shall see that in some situations we can actually
generate optimal code for expressions on certain classes of register machines.

8.2.3 Exercises for Section 8.2

Exercise 8.2.1 : Generate code for the following three-address statements as-
suming all variables are stored in memory locations.

a) x = 1

b) x = a

c) x = a + 1

d) x = a + b

e) The two statements

x = b * c

y = a + x

Exercise 8.2.2 : Generate code for the following three-address statements as-
suming a and b are arrays whose elements are 4-byte values.

a) The four-statement sequence

x = a[i]

y = b[j]

a[i] = y

b[j] = x

b) The three-statement sequence

x = a[i]

y = b[i]

z = x * y

c) The three-statement sequence

x = a[i]

y = b[x]

a[i] = y

	5 Syntax-Directed Translation
	5.1 Syntax-Directed Definitions
	5.1.1 Inherited and Synthesized Attributes
	5.1.2 Evaluating an SDD at the Nodes of a Parse Tree
	5.1.3 Exercises for Section 5.1

	5.2 Evaluation Orders for SDD's
	5.2.1 Dependency Graphs
	5.2.2 Ordering the Evaluation of Attributes
	5.2.3 S-Attributed Definitions
	5.2.4 L-Attributed Definitions
	5.2.5 Semantic Rules with Controlled Side Effects
	5.2.6 Exercises for Section 5.2

	5.3 Applications of Syntax-Directed Translation
	5.3.1 Construction of Syntax Trees
	5.3.2 The Structure of a Type
	5.3.3 Exercises for Section 5.3

	6 Intermediate-Code Generation
	6.1 Variants of Syntax Trees
	6.1.1 Directed Acyclic Graphs for Expressions
	6.1.2 The Value-Number Method for Constructing DAG's
	6.1.3 Exercises for Section 6.1

	6.2 Three-Address Code
	6.2.1 Addresses and Instructions
	6.2.2 Quadruples
	6.2.3 Triples
	6.2.4 Static Single-Assignment Form
	6.2.5 Exercises for Section 6.2

	6.3 Types and Declarations

	8 Code Generation
	8.1 Issues in the Design of a Code Generator
	8.1.1 Input to the Code Generator
	8.1.2 The Target Program
	8.1.3 Instruction Selection
	8.1.4 Register Allocation
	8.1.5 Evaluation Order

	8.2 The Target Language
	8.2.1 A Simple Target Machine Model
	8.2.2 Program and Instruction Costs
	8.2.3 Exercises for Section 8.2

