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Module-I

Content to be covered:
• Why study the Theory of Computation, Languages and Strings:

 Central Concepts of  Automata Theory: Alphabets, Strings, Languages

 A Language Hierarchy

• Finite State Machines (FSM): 

 Introduction

 Deterministic FSM,

 Regular languages, Designing FSM, 

 Nondeterministic FSMs, 

 Simulators for FSMs, 

 Minimizing FSMs, 

 Canonical form of Regular languages,

• Finite State Transducers, Bidirectional Transducers.

(Textbook 1: Ch 1,2, 3, 5.1 to 5.10)
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What is Automata?

Automata Theory is a branch of computer science

that deals with designing abstract self-propelled

computing devices that follow a predetermined

sequence of operations automatically.

An automaton with a finite number of states is called

a Finite Automaton
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Why Study the Theory of 

Computation or automata 

theory?

Implementations come and go.
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IBM 7090 Programming in the 1950’s 

ENTRY SXA 4,RETURN

LDQ X

FMP A

FAD B

XCA

FMP X

FAD C

STO RESULT

RETURN TRA 0

A BSS 1

B BSS 1

C BSS 1

X BSS 1

TEMP BSS 1

STORE BSS 1

END

Ax2 + Bx +C
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Goals of Problem Solving 

Principles of Problems:

• Does a solution exist?  

– If not, is there a restricted variation?

• Can solution be implemented in fixed 

memory?

• Is Solution efficient?

– Growth of time & memory with problem size?
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Applications of the automata 

Theory
• Used in design of Lexical analyzer of compilers which breaks 

source program into tokens like identifies, Keywords etc..

• Software for designing  and checking the behavior of the Digital 
circuits.

• FSMs (finite state machines) for vending machines, Traffic 
signals, communication protocols, & building security devices.

• String Matching: Searching words, phrase and other pattern in 
large bodies of text(like web pages)

• Interactive Computer games as nondeterministic FSMs.

• Used in Natural languages processing: for speech to text and text 
to speech conversions.

• Artificial Intelligence: Medical Dignosis,Factory Scheduling etc..
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The Central Concepts of Automata 

Theory
(Alphabets, Strings, Languages etc.)

This is one of MOST important Section.

It includes the TERMINOLOGY required to be 

successful in this course.

KNOW this section & ALL DEFINITIONS!! 
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Alphabet - 

• An alphabet is a non-empty, finite set of 

characters/symbols

• Use  to denote an alphabet

• Examples

 =  { a, b }

 =  { 0, 1, 2 }

 = { a, b, c,…z, A, B, … Z }

 = { #, $, *, @, & }
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String

• A string is a finite sequence, possibly 

empty, of characters or symbols drawn 

from some alphabet . 

•  is the empty string

• * is the set of all possible strings over an 
alphabet . 
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Example Alphabets & Strings

Alphabet name Alphabet symbols Example strings

The lower case 

English alphabet

{a, b, c, …, z} , aabbcg, aaaaa

The binary 

alphabet

{0, 1} , 0, 001100,11

A star alphabet { ,  ,  , , , } , , 

A music 

alphabet {w, h, q, e, x, r, } , q w , w w r
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Functions/Operations on String

Length:  

• |s| is the length of string s

• |s| is the number of characters in string s.

|| = 0

|1001101| = 7

#c(s) is defined as the number of times that c occurs in s.

Ex. : #a(abbaaa) = 4.
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For example: ∑0 = { ε }   , k =0

∑3 = {000, 001, 010, 011, 100, 101, 110, 111} 

k = 3



*- Kleene closure 

• * is defined as the set of all possible 

strings of any length that can be formed 

from the alphabet 

–* is a language

• * contains an infinite number of strings

–* is countably infinite
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*   Example

Let  = {a, b}

* = {, a, b,aa,ab,ba,bb,aaa,aab,… }
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+- Positive closure 
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Other functions on Strings

Concatenation: the concatenation of  2 strings s

and t is the string formed by appending t to s; written 

as s||t or more commonly, st

Example: 
If x = good and y = bye, then xy = goodbye

and yx = byegood

• Note that |xy| = |x| + |y|

•  is the identity for concatenation of strings.  So,

x (x  =  x = x)

• Concatenation is associative.  So, 

s, t, w ((st)w = s(tw))
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Replication:  For each string w and each natural 

number k, the string w k is:

w 0 = 

w k+1 = w k w

Examples:
a3 = aaa

(bye)2 = byebye

a0b3 = bbb

b2y2e2 = ??
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Reverse: For each string w, w R is defined as:

if |w| = 0 then w R = w = 

if |w| = 1 then w R = w

if |w| > 1 then:

a   (u  * (w = ua)) 

So define w R = a u R
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A Language

A language is a (finite or infinite) set of strings over a (finite) 

alphabet .

Examples: Let  = {a, b}

Some languages over : 

L1 =  = { } // the empty language, no strings

L2 = {} // language contains only the empty string

L3 = {a, b} 

L4 = {, a, aa, aaa, aaaa, aaaaa}

so on…
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Description Languages

Remember we are defining a set

Set Notation:

L = { w  * | description of w}

L = { w  {a,b,c}* | description of w}

• “Description of w” can take many forms but 

must be precise

• Notation can vary, but must precisely define
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Example Language Definitions

L = {w  {a, b}* | all a’s precede all b’s}

• aab,aaabb, and aabbb are in L.  

• aba, ba, and abc are not in L. 

.
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Example Language Definitions

Let  = {a, b}
• L = { w  * :  |w| < 5}

• L = { w  * | w begins with b}

• L = { w  * | #b(w) = 2}

• L = { w  * | each a is followed by exactly 2 b’s}

• L = { w  * | w does not begin with a}
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Operation on Languages

• Cardinality of a Language: the number of strings 

in the language L.

• Denoted as  |L| 

• Smallest language over any  is , with 

cardinality 0.

• The largest is *.  
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Concatenation of Languages

26

Other Examples:

L1 =     {cat, dog}           

L2       =     {apple, pear}

L1 L2 =     {catapple, catpear, dogapple, dogpear}

L2 L1 =      {applecat,appledog,pearcat,peardog}
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Others Operations….

Kleene Closure: L* =        Li = L0 U L1 U L2 U…

Positive Closure: L+ =        Li = L1 U L2 U…




0i




0i



A Language Hierarchy
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Generator vs. Recognizer 

Reminder…

Given a problem, we can develop a machine 

(automaton) that

• Generates a solutions 

OR

• Recognizes a solution
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Generator vs. Recognizer 

Example

Given 2 integers A & B, determine the sum.

• Generator: Write a program to accept A & B as input 

then compute the sum A+B

• Recognizer: Write a program to accept A & B & C as 

input then determine if A+B = C

We usually write Generators! But when would an 

Recognizer be an appropriate solution?
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A decision problem is simply a problem for which the answer is yes or 

no (True or False).  

A decision procedure answers a decision problem.

Example

•  Given an integer n, does n have a pair of consecutive       

integers as factors?

The language recognition problem:  Given a 

language L and a string w, is w in L?

Our focus

Decision Problems
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Casting multiplication as decision:

• Problem: Given two nonnegative integers, compute the

product.

• Encoding : Transform computing into verification.

• The language:

L = {w of the form: integer1>x<integer2>=<integer3>, 

where: <integern> is any well formed 

integer, and integer3 = integer1 

integer2  }

12x9=108

12=12

12x8=108

Turning Problems into Decision Problems

5



A Hierarchy of Languages

6

D=decidable

SD = Semidecidable



Chomsky Hierarchy of Languages

Languages from “simplest” to “complex”

Each is a subset of the ones below

• Regular 

• Context Free

• Context Sensitive 

• Recursively Enumerable

Can be defined by the type of

Machine that will recognize it.

7Noam Chomsky



Regular Languages

A Regular Language is one that can be recognized by a Finite State

Machine.

An FSM to accept a*b*:
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Context Free Language

A Context Free Language is one that can be recognized by a Push

Down Automata.

A PDA to accept AnBn = {anbn : n  0}
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Decidable & Semidecidable Languages

A Decidable Language is one that is recognized by a

Turing Machine which halts on all input strings.

A Semidecidable Language is one that is recognized by a

Turing Machine which halts on all input strings which are in

the language, but may loop infinitely on some strings which

are not in the language.
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5. FINITE STATE MACHINE(FSM)

The simplest and most efficient computational device that we will consider 

is the Finite State Machine ( FSM). 

A  Finite State Machine (or FSM) is a computational device whose input is a string and 

whose output is one of two values that we can call Accept and Reject. 

(FSMs are also sometimes called finite state automata or FSAs.)
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Deterministic FSM(DFSM)

13

Language Accepted by FSM:



Designing of DFSM (Pattern Based Problems)

Design DFSM to:

1. Accept all the strings of a‟s and b‟s

2. Accept all the strings a‟s and b‟s begin with b

3. Accepts all the strings of a‟s and b‟s ending with ab

4. Recognize all the strings of 0‟s and 1‟s having substring 011 

5. L = { w : #a(w) ≥ 1 , Σ = { a,b} }

6. Obtain a DFSM to accept to accept strings of a‟s and b‟s starting with

the sub-string ab.

7. Obtain a DFSM to accept all strings of a‟s  and  b‟s ending with 

the string abb.

8. Obtain a DFSM to accept all strings of a‟s and b‟s which do not ending with the 

string abb
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3. Accepts all the strings of a‟s and b‟s ending with ab
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4. Recognize all the strings of 0‟s and 1‟s having  string 011 

i.e. L = { w ∈ {0,1}* | each w contains a sub-string 001}
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5. L = { w : #a(w) ≥ 1 , Σ = { a,b} }

6. Obtain a DFSM to accept to accept strings of a‟s and   

b‟s starting with a string ab
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7. Obtain a DFSM to accept all strings of a‟s and  b‟s ending with the substring abb
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8. Obtain a DFSM to accept all strings of a‟s and b‟s which do not    

ending with the substring abb
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9. Obtain DFSM to accept strings of 0‟s and 1‟s having three consecutive 

0‟s
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10. Construct a DFSM for L= {Wbab | w ∈ {a,b}* } and show the moves 

made machine on: ababab
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11. Obtain a DFSM to accept strings of a‟s and b‟s ending with ab or ba
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*12. Construct a DFSM to accepts all the strings of 0‟s, 1‟s and 2‟s  

beginning with  „0‟ followed by odd number of 1‟s & ending with „2‟
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13. Obtain a DFSM to accept strings of a‟s and b‟s with at most two  

consecutive b‟s
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14. Design a DFSM for the L = { w: #a(w) ≤ 3 , w ∈ {a , b}* }
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*15.Construct DFSM for  L = { w ∈ {a,b}* | w contains no more than one b }  
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* Obtain a DFSM for L = w ∈ {0,1}* | w has 001 as a substring } 

27



28

L=
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Moves made by DFSM: on: 010110



- *Design a DFSM for L = {w ∈ {a,b}*  | w contains even number of a‟s & 

odd number of b‟s }

- *Design a DFSM for L = {w ∈ {a,b}*  | w contains even number of a‟s & 

even number of b‟s }

31



*Draw a DFSM to accept decimal strings which are divisible by 3
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Draw a DFSM to accept the Language L = { w : w has odd number of 1‟s and followed 

by even number of 0‟s } 
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-Obtain a DFSM to accept the Language L={ w : |w| mod 3 = 0} on Σ ={a,b}}

-Obtain a DFSM to accept the Language L={ w : |w| mod 3 ≠ 0} on Σ ={a,b}}
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Non-Deterministic FSM(NDFSM)

35

M = (Q, , δ, q0, F), where:

Q: is a finite set of states

 : is an alphabet

q0 Q : is the initial state

F  Q : is the set of accepting states, and

δ: is the transition relation.  Q(  {}) 2Q

Definition:

Accepting by an NDFSM

M accepts a string w iff there exists some path along which w drives M to some

element of A.

The language accepted by M, denoted L(M), is the set of all strings

accepted by M.



Sources of Non-determinism

36

What differ from determinism?



Why NDFSM?

• Very easy to construct

• Has the ability to guess something about its input

• is more powerful than DFSM

• Has power to be in several states at a time
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1. Construct a  NDFSM to accept L = { w | w ends with ab,  = { a,b} }

Draw the Transition table(TT) and show the moves made by m/c on: baab

38



2. Obtain an NDFSM to accept L ={ w | w  ababn or abn, where n ≥ 0}

39



3.Design an  NDFSM for L = { w | w contains the substring 0101 ,  = { 0,1} }

40



4. Write an NDFSM to accept string of a‟s and b‟s ending with ab or ba

41



5. L = {w  {a, b}* : w is made up of an optional a followed  

by aa followed by zero or more b‟s}. 

42

M = (Q, , δ, q0, F) = ({q0, q1, q2 , q3}, {a, b}, δ, q0, {q3}) 



6. Design -NDFSM  for L = { w | w contains at least two 0‟s or exactly 

two 1‟s }
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7. Design an -NDFSM to accept strings of a‟s and b‟s ending with ab or ba

44
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8. L = {w  {a, b}* : w = aba or |w| is even}.  

Do you start to feel the 

power of Non-

Determinism?
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9. L = {w  {a, b}* : the fourth to the last character is a}



47

DFSM NDFSM

5. Less powerful but easy  

to implement

More powerful than DFSM, but very difficult 

to implement



*Converting an NDFSM to DFSM using subset Construction 

Method

48

1) NDFSM DFSM            2) -NDFSM  DFSM
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Example-1 (NDFSM to DFSM )
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Example-2 : All strings of a‟s & b‟s ending ab or ba



-NDFSM to DFSM

51

eps(q0) = 

eps(q1) =

eps(q2) =

eps(q3) =

Computing -Closure of State(eps)
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Example-1 (-NDFSM to DFSM) Example-2

Example-3



Solution:
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Minimizing a DFSM

56

-The process of reducing a given DFSM to its minimal form is called as minimization of DFSM

-A DFSM  M is minimal iff there is no other DFSM M‟ such that L(M) = L(M‟) and M‟ has fewer 

states than M does.

-Some states can be redundant

-There Exist a unique Minimal DFSM for ever Regular Language L.

-Most methods involve finding equivalent  states and merging them into single state.

Equivalence of two states:

Two states p and q of a DFSM are equivalent(Indistinguishable) iff:

δ(p , w) ∈ F  and δ(q , w) ∈ F   or δ(p , w) ∉ F and δ(q , w) ∉ F

for all strings w ∈ Σ * .

Otherwise states p and q are Distinguishable ( i.e Distinct)
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1. Eliminate all the dead states and unreachable states from the given DFSM (if any)

2. Let k = 0

3. Divide Q (set of states) into two sets such that one set contains all the non-final 

states and other set contains all the final states. This Partition is called π0

4. k = k+1.

5. Find πk by partitioning the different sets of πk-1 . In each set of πk-1 , consider all the 

possible pair of states within each set and if the two states are distinguishable, split 

the set into different sets in πk

6. Repeat step 4 and 5 until no change in partition occurs (i.e until πk ≠ πk-1 )

7. All those states which belong to the same set are equivalent and Can be merged.

Method: Minimize DFSM using Partitioning(Spliting)

Procedure(High-Level Description)
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Example-1
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Example-2



Example-3
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Home Work

61

Minimize the following DFSMs

1)
2)

3) 4)
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A Canonical form for FSM
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Procedure:  To build a Canonical form for FSM

It provides the basis for a simple way to test whether two FSMs are equivalent or 

not…



Example
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Introduction to Transducers
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Introduction to 
Transducers



What is a transducer? 

• Defined as a device that converts one form 
of energy to another. 

• Examples: Motors, Speakers, Microphones, 
Antennas, Light Bulbs, Potentiometer, 
Gauges…

• Essentially Sensors and Actuators   



Finite-State Transducers 

• Two tapes, one for input and one for 
output.

• Converts a input into an output. 

• Mealy and Moore machines. 



Moore Machine

• Invented by Edward F. Moore (1925 -2003)

• Associates an output with each state of the 
machine.



Moore Machine Formal Definition 

is a 5-tuples, Denoted by M = (Q, Σ, O, δ, λ, q0 ) where

• Q= Finite set of States

• Σ = Input symbols

• O = Output symbols

• δ = Transition Function ( Q X Σ  Q )

• λ = Output Function      ( Q X Σ  O )

• q0 = Initial /Start State



Street light Example 



Example: Moore m/c



Mealy Machine

• Invented by George H. Mealy in 1955

• Associates outputs with transitions. 



Mealy Machine Formal Definition 

Is a 6-tuples , denoted by M = (Q, Σ, O, δ , λ, q0 ) 
where

• Q = Finite set of States

• Σ = Input symbols

• O = Output symbols

• δ = Transition Function 

• λ = output function

• q0 = Initial State / Start state



Mealy Notation 



Example -1: Design a Mealy M/c for a binary input sequence, such that 
, if it has a substring 101, the machine outputs A. If input has 
substring 110, the machine outputs B. Otherwise it outputs C.



Example-2: Design a mealy m/c that takes binary number as input and 
produces 2’s compliment of that number as output . Assume the input 
is read from LSB to MSB and end carry is discarded.



Moore to Mealy

Moore to Mealy Conversion



Moore to Mealy Conversion



Module-II
Regular Expressions and Regular Grammars

*Regular Expressions*

-Operators to build REs and their Precedence  Levels

-Building Regular expression for  RLs.

-Kleene’s theorem: Building an FSM from a RE

-Building RE from a FSM using Ripping method

-Applications of REs,

*Regular Grammars*

-Definition of a Regular Grammar, Examples

-Regular Grammars and Regular languages. 

*Properties of Regular Languages*

-Regular Languages and Non-regular Languages

-Closure properties of RLs

-To show some languages are not RLs using Pumping Lemma



Regular Languages

Regular 

Language

Regular Expressions

Finite State  

Machine

L

Accepts



Definition of Regular Expressions

The regular expressions over an alphabet  are all and 

only the strings that can be obtained as follows:

1.  is a regular expression, denoting L() = 

2.  is a regular expression, denoting L( ) = { }

3. Every symbol a belongs to  is a regular expression.

4. If  ,  are regular expressions, then so is .

5. If  ,  are regular expressions, then so is |.

6. If  is a regular expression, then so is *.



Operator Precedence in Regular Expressions

Highest Kleene star (*)

concatenation         (.)

Lowest union ( | )

OperatorsPrecedence



Regular Expression Examples

If  = {a, b}, the following are regular expressions:




a

(a  b)*     or   (a|b)*

abba   or  abba | 



Examples: RE

1) a*b*  

2)(a | b)* 

3) (a |b)*a*b*  

4)(a | b)*abba (a|b)*



Examples Contd…
Obtain a Regular Expression to accept all the strings of a’s & b’s of length ≤ 2

Obtain a RE to accept strings of a’s & b’s with even number of a’s followed by add 

number of b’s



Obtain a RE to accept all the strings of 0’s and 1’s ending with either 01 or 10

Obtain a RE to accept all the strings of a’s and b’s having substring abb

Build a RE to accept all strings of a’, b’s & c’s containing atleast one a & 

atleast on b over Σ = { a,b,c}



Obtain a RE representing  strings of a’s and b’s having odd length.

RE: ((a | b)(a | b))*(a | b) 

Obtain  a RE to accept a Language consisting of strings of a’s and b’s

with alternate a’s and b’s

RE: ( | b) (ab)* ( | a)

Build a RE to accept strings of  0’s & 1’s having no two consecutive 0  

RE: (1 | 01)* (0 | )



L = {w  {a, b}*: |w| is even}

RE: ((a | b) (a | b))*

L = {w  {a, b}*: w contains an odd number of a’s}

RE: b* (ab*ab*)* a b*

L = {w  {a, b}* : every a is immediately followed b}

RE: (b | ab)*



Obtain a RE to recognize all strings of a’s & b’s whose 3rd symbol from the right is 

‘a’

Obtain a RE to accept strings of a’s & b’s begin and end with same symbol.

RE:

RE:

Develop RE for  L = { a2nb2m | n ≥ 0 , m ≥ 0 } 

RE:



Obtain a RE to accept strings of a’s & b’s containing  no more then three a’s

RE: b*( |a) b*( |a)b*( |a)b*

Obtain a RE for L = { anbm : n ≥ 4 , m ≤ 3 }

RE: aaaaa*( | b)3

Obtain a RE to recognize strings of a’s and b’s whose length is multiple of 3

or
L ={ w : |w|mod 3 = 0, w ∈ { a,b}* }

RE: ((a|b)(a|b)(a|b))*



Obtain a RE for L = { anbm | m+n is even }

Obtain a RE for L = { ambn | m ≥1, n ≥ 1, mn ≥ 3 }



Obtain a RE for the set of all strings that do not end with 01, over {0,1}*

Regular expression to recognize variables, signed integer & signed real numbers



Algebraic Laws  for Regular expressions

If r,s and t are any arbitrary RE then:



Applications of Regular expressions

1. Regular expressions in UNIX/Linux operating systems

2. Regular Expressions in Pattern Matching( Search Engines)

3. Regular Expressions in Software Engineering

4. Regular expressions  in Programming Languages( Perl, 

Python etc).

5. Regular Expressions in Lexical Analysis(Compiler Design)



Kleene’s Theorem

Finite state machines and regular expressions define

the same class of languages. To prove this, we must

show:

Theorem: Any language that can be defined with a

regular expression can be accepted by some FSM

and so is regular.

Theorem: Every regular language (i.e., every language

that can be accepted by some DFSM) can be

defined with a regular expression.



For Every Regular Expression there 

is a Corresponding FSM

We’ll show this by construction.  An FSM for:

Regular expression FSM





for any a ∈ Σ



Regular expression FSM

α | β

αβ

α*

Proof Contd…



An Example
RE: ab

An FSM for ab:

RE: (a | b)  or  L((a | b))

RE: a*



Design an NDFSM that accept the language L(aa*(a+b)) 



Convert the regular expression  (0 +1)*1(0 + 1) to NDFSM



Obtain an NDFSM that accept the Language: L(ab(a+b)*)  



Home Work

Convert the following Res to NDFSM

1) a* | b*| c*

2) ( a + b)* aa (a+b)*

3) L = (01(0 + 01)*(0 + 00))



Solution



For Every FSM There is a 

Corresponding Regular Expression

We’ll show this by construction(Ripping or State elimination)  

The key idea is that we’ll allow arbitrary regular expressions

to label the transitions of an FSM.



A Simple Example 

Let M be: 

Suppose we rip out state 2:



The Algorithm

1. Remove unreachable states from M.

2. If M has no accepting states then return .

3. If the start state of M is part of a loop, create a new start state s

and connect s to M’s start state via an -transition.  

4. If there is more than one accepting state of M or there are any 

transitions out of any of them, create a new accepting state and 

connect each of M’s accepting states to it via an -transition.  The 

old accepting states no longer accept.

5. If M has only one state then return .

6. Until only the start state and the accepting state remain do:

6.1 Select rip (not start or an accepting state).  

6.2 Remove rip from M.

6.3 *Modify the transitions among the remaining states so M

accepts the same strings. 

7. Return the regular expression( between start and final state) 



Example-1

1. Create a new initial state and a new, unique accepting 

state, neither of which is part of a loop.

Getting into required form



2. Remove states and arcs and replace with arcs labelled 

with larger and larger regular expressions.



An Example, Continued

Remove state 3:



An Example, Continued

Remove state 2:



An Example, Continued

Remove state 1:



Example-2



Example-3





Simplifying Regular Expressions

Regex’s describe sets:

● Union is commutative:   |  =  | 

● Union is associative: ( | ) |  =  | ( | ).

●  is the identity for union:   |  =  |  = .

● Union is idempotent:   |  =  .

Concatenation:

● Concatenation is associative:  () = ().

●  is the identity for concatenation:    =   = .

●  is a zero for concatenation:    =   = .

Concatenation distributes over union:

● ( | )  = ( ) | ( ).  

●  ( | ) = ( ) | ( ). 

Kleene star:

● * = .

● * = .

●(*)* = *. 

● ** = *.  

●( | )* = (**)*. 



THANK U…



Regular and Nonregular Languages

-Showing that a Language is Regular

-Closure Properties of Regular Languages

-Showing that a Language is Not Regular(pumping Lemma)





What is a regular Language?



Closure Properties of Regular Languages

1. If L and M are regular Languages , so is L U M

2. If L and M are regular Languages, LM is also regular

3. If L is regular, so is  L* ( Kline star)

4. If L is regular, so is complement of L .

5. If L  and M are regular languages , L ∩ M is also regular

6. If L and M are regular languages ,  L- M is also regular

7. If L is regular, then  LR is also regular(Reversal)

8. if L is regular , so is h(L) < Homomorphism or letter substitution>



If L1 and L2 are regular , then L1U L2, L1.L2 and L* also denote  

the regular Language.

Proof:  It is given that L1 and L2 are regular Languages. So, there exist regular 

expressions  α and β such that 

L1 = L(α )

L2 = L(β)

By the definition of Regular expressions, we have

• α | β is a regular expression denoting the language L1 U L2

• α.β is a regular expression denoting  the language L1.L2

• α* is a regular expression denoting the language L1

so, the regular language are closed under  Union, Concatenation and star 

closure.



If  L is a regular  Language , then complement of L  is also 

regular





If L 1 and L2 are regular Languages, then so, is L1 ∩ L2 . 



If L 1 and L2 are regular Languages, then so, is L1 - L2 . 



If L is regular, then  LR is also regular(Reversal)

Proof:  We know that L is regular. Let α be a regular expression describing L(α). It 

is required to prove that there is another regular expression  ER such that:

L(α) = (L(α))R 

By definition of regular expression, we have:

Regular Expression (Regular Expression)R

ε {ε}R   = ε  L = {ε}

θ {θ}R   = θ  L = { } 0r θ

a  (Any i/p symbol) {a}R   = a                L = { a} 

α | β (α | β)R  = αR | βR   
 L(αR)UL(βR) 

α.β (α.β)R = βR.αR     
 L(βR).L(αR)

α* (α*)R  =  (αR)*         L(αR)

From above, its clear that LR is also regular when  L is regular. 



What is homomorphism?

Let Σ and ς are set of alphabets. 

The homomorphic function  h: Σ ς* is called 

homomorphism ( i.e single letter is replaced by a string)

If  w = a1a2a3….an then   h(w) = h(a1)h(a2)h(a3)….

If   L = { w | w ∈ L } , then h(L) =  { h(w) | w ∈ L } 

If L is regular , so is h(L) 

Example:

Let Σ = { 0,1} , ς = { a,b} and  h(0) = ab , h(1) = b. What is h(010) ?

If L = { 00, 010}  what is h(L)?

h(010) = h(0)h(1)h(0) = abbab

h(L) = h({00,010}) = { h(00), h(010) } = { h(0)h(0) , h(0)h(1)h(0)} = { abab, abbab}



Proof(using Regular Expression):

Let α be the regular expression and L(α) be the

corresponding regular Language.

We can easily find h(α) by substituting h(a) for each a in Σ.

By definition of Regular expression, h(α) is a regular

expression and h(L) is regular language. So, the regular

language is closed under homomorphism.

Example:  Σ = { a,b} , ς = { 0,1) and h(a) = 00 , h(b) = 10 

Suppose α = (a|b)* ab , describe the L = { w ∈ {a,b}* | w ends with ab}

h(α) = h((a|b)*ab) = h((a|b)*) h(ab) = (h(a)|h(b))*h(a)h(b)

=  (00|10)* 0010  describe the Language h(L)



Proving Languages Not to Be 

Regular 
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Some languages are not regular

When is a language is regular? 

if we are able to construct one of the following: 
DFSM or NDFSM or RE or RG

When is it not regular?

If we can show that no FSM can be built for a

Language.



How to prove languages are not

regular?

What if we cannot come up with any FSM? 

A) Can it be language that is not regular? 

B) Or is it that we tried wrong approaches?

How do we decisively prove that a language is 

not regular?



Pigeon Hole Principle



Pumping Lemma for Regular Languages

Let L be a regular language. Then there exists a constant n (which depends on

L) such that for every string w in L such that |x| ≥ n , we can break w into three

strings x = uvw such that:

1. v ≠ ε

2. |uv| ≤ n 

3. For all k ≥ 0, the string  u(v)kw is also in L.

Statement:



Pumping Lemma: Proof

• L is regular => it should have a DFSM. 

– Set n := Number of states in the DFSM

• Any string xL, such that  |x| ≥ n, should have the form: x=a1a2…am, 

where m ≥ n

 => We should be able to break x = uvw as follows:

 u= a1a2..ai v = ai+1ai+2..aJ;  w = aJ+1aJ+2..am

 u’s path will be p0…pi

 v’s path will be pi pi+1..pJ (but pi=pJ implying a loop)

 w’s path will be pJpJ+1..pm

 Now consider another 

string xk=u(v)kw , where k≥0  

 Case: k = 0

 DFSM will reach the accept state pm

 Case: k > 0

 DFSM will loop for vk, and finally reach the accept state pm for w

 In either case, x L             (This proves the lemma)

p0 pi pm

u w

=pj

vk (for k loops)



The pumping lemma is  a  very powerful tool  and 

has the following applications’;

1.It is used to prove that certain Languages 

are non-regular.

2. It can be used to check whether a 

language accepted by FSM is finite or 

infinite



The General Strategy used to prove that Language is Not Regular 

Step 1: Assume that  the Language L is regular.

Step 2: Select the string x such that |x| ≥ n and break it into 3 substrings  

u,v and w so that x = uvw with the constraints: v ≠ ε & |uv| ≤ n.

Step 3: Find any k such that  u(v)kw ∉ L .

( According to pumping lemma, uvkw is in L for any k ≥ 0. so the result is contradiction to 

our assumption. Hence given L is not regular)



Examples



Show that  L = { anbn | n ≥ 0 } is not a regular



Prove that  L = { aibj | i > j } is not a regular.

Step 1:  Assume that L is regular and  n is some constant integer.

Step 2: Select  x = an+1bn ,  since |x| = 2n+1 ≥ n, we can split  x into uvw

such that |uv| ≤ n and v ≠ ε as shown below.

x = an+1bn = an abn = an-1 a  abn ,  where u = an-1  , v = a , w = abn

Step 3: According to pumping lemma, an-1 (a)k abn  L for any k ≥ 0

if we choose k=0, 

The resulting string becomes:  an-1 abn = anbn ∉ L.

Therefore , L is not regular. 



Show that  L = { anbl| n ≠ l } is not  regular.

-Proof is same as previous Language…

Show that  L = { w  | na(w) < nb(w) } is not regular.

-Proof same as previous Language…



Prove that  L = { wwR | w ∈ {0,1 }*  }  is not a regular.

1. Assume that L is regular and n is some integer constant.

2. Consider the string  x = 1n0n0n1n , since |x| = 4n ≥ n, we can split  x   

into uvw such that |uv| ≤ n and v ≠ ε as shown below:

x = 1n-1 1  0n0n1n ,   where u = 1n-1 , v = 1 and w = 0n0n1n

3.  According to pumping lemma, 1n-1 (1)k 0n0n1n  L for k ≥ 0

if we can choose k=0, then

the resulting string become: 1n-10n0n1n ∉ L.

Therefore , L is not regular 



Show that  L = {an! | n ≥ 0 } is not a regular.

1. Assume that L is regular and n is integer constant

2. Consider the string  x = an! , since |x| = n! ≥ n, we can split  x   

into uvw such that |uv| ≤ n and v ≠ ε as shown below:

i.e. x = ai aj an!-i-j,   where u = ai , v = aj and w = an!-i-j

3.  According to pumping lemma, ai (aj )k an!-i-j  L for k ≥ 0

if we  choose k=0, it means that :

ai (aj )k an!-i-j = ai an!-i-j = an!-j  L

It is clear that:  n! > (n!-j) < (n+1)!   [take  j = 1 ]

Since  (n!-1)  lies between factorial of n! and (n+1)!               

implies that an!-1  ∉ L   

Therefore , L is not regular. 

ADMIN
Highlight



Show that the language  L = {a
p
|  p is a prime number } is not regular.

1. Assume that L is regular and n is some integer constant

2. Select string x = an  L where n is prime. Since |x| = n , so we can 

break x  into x= uvw such that  |v| ≠ ε and |uv| ≤ n as shown below.

x = an = a
i
a

j
a

n-i-j 
 L

where |u| = i ,  |v| = j ≥ 1 and |uv| = i+j ≤ n

3. According to Pumping lemma, u(v)
k
w  L for k =0,1,2….

i.e.                   a
i
(a

j
)
k 
a

n-i-j 
 L

i.e.           i+jk+n-i-j = n+j(k-1) is prime for all k ≥ 0

Now, if we choose k = n+1, then             

n + j(k-1) = n+jn = n(j+1)  must be a prime.

which is a contradiction( because prime number can not be factored)

so, n(j+1) is not a prime. 

Therefore , L  is not  Regular



1.Show that L  = {w ∈ {0, 1}* : the number of 0s in w equals the number of 1s in w}                          

is not a regular using pumping Lemma.

2. Prove that L = {ww : w ∈ { 0, 1} } is not a regular Language.

3. Show that L  = {0m1n : m > n ≥ 0}  is not a regular.

similar to: L = { aibj | i > j } is not regular ( ref. : slide No. 23)

Home Work



THANQ!



Regular Grammars
( also called right-Linear Grammars)



Definition: A regular grammar G is a 4-tuples 

G = ( V, T,P,S), where

V: Set of Not-terminal symbols also called Variables.

T:  Set of Terminal symbols

P: Set of productions or rules of the form  

A a   or Aε or A aB 

where a ∈ T is terminal symbol and A,B ∈ V, are 

variables

S: The start symbol (Non-terminal)

* Regular grammar G describes a regular Language denoted by  L(G) 



Simple Example: Regular Grammar to accept all string with any number of  a’s



Examples contd..
1.Obtain a Regular grammar to generate all strings of a’s and b’s including empty  

string.

P :  SaS

SbS

S ε Therefore G = ( {S}, {a,b}, P,S)

2. Obtain a Regular Grammar  to accept all strings of 0’s and 1’s ending 01



3. Design a Regular grammar  L = { w ∈ { a , b}* :  |w| is even }

G: 

S  aT | bT | ε

T  aS | bS Generate w = ababbb

4. Obtain a Regular grammar to accept all strings of a’s and b’s that begin 

with a and end with b.



5. Let L = {w ∈ {a, b}* : w ends with the pattern aaaa} 

Regular Grammar for L:



Finite State Machine  Regular Grammars

For every FSM M , there exists a Regular Grammar G, such that L(M) =L(G) 

1. Assume that  M DFSM (if not convert it to DFSM)
Construct G = ( V,T,P,S) from M as follows:

2. Create a Nonterminal for each state in the M.

3. The start state of M becomes the starting Nonterminal for G

4. For each transition 𝛿(A , a) = B, add a production AaB to G

5. For each accepting state A, add a production  A ε to G



Examples
1. L = {w ∈ {a, b}* : w contains an even number of a’s and an even number of b’s}.



2. L = {w ∈ {a, b}* : w does not end in aa}.



3. L = {w ∈ {a, b}* : w contains the substring abb}.



Regular Grammars  FSM

For every Regular Grammar G , there exists a FSM M, such that L(G) = L(M) 

1.Convert the Following RG to FSM

S → aT

T → bT

T → a

T → aW

W → ε

W → aT



S → aS

S → bS

S → aB

B → aC

C → aD

D → a

2.Convert the Following RG to FSM



THANQ!



Module-3

Topic: Context-Free Grammars 

Content
-Introduction to Grammars, CFGs and languages

-Designing CFGs, simplifying CFGs 

-Derivation and Parse trees 

-Ambiguity, Examples

-Techniques for reducing ambiguity from Grammars

- Normal Forms( CNF, GNF)



Introduction to CFG: Informal Comments

 A context-free grammar is a notation for describing  

languages.

 It is more powerful than finite automata or RE’s, but still 

cannot define all possible languages.

Useful for nested structures, e.g., parentheses in  

programming languages.

Basic idea is to use “variables” to stand for sets of strings 

(i.e., languages).

These variables are defined recursively, in terms of one 

another.



A context-free grammar (CFG)  G,  is defined by a 4-tuples as: 

G = (V,T,P,S)

Where,

T: is the final set of a terminal symbols

V: is the final set of a Non-terminal(Variables) symbols.

S: is the start symbol which is used to derive/generate the string  

belongs to the Language and represents the Language being 

defined.

P: is a set of production rules of the A  α

where A is single Nonterminal symbol and α is a string  

of Zero or more Terminals &  Nonterminal symbols

https://en.wikipedia.org/wiki/Nonterminal


Example: A Context-Free Grammar for Palindromes

S0S0 

S1S1

S0

S1

Sε

Formally,  the grammar is represented  by: 

G =( {S}, {0,1}, P, S)



6. T



For Instance, Consider the set of rules or productions below: 

S0S0 

S1S1

S0

S1

Sε

Above grammar, defined the Language of Palindromes over alphabet {0,1}. Thus, the set of 

palindromes is a CFL. 



Designing of CFG: Problems

Design the Context free grammar for the Language L = { 0n1n | n ≥ 0 }

Design the Context free grammar for the Language L = { w∈ { (, )}* : the parentheses are 

balanced }

P =

S (S) | SS | ε



Derivation and Parse trees 

A parse tree of a derivation is a tree in which:

• Each internal node is labeled with a nonterminal

•If a rule A A1A2…An occurs in the derivation then A is a 

parent node of nodes labeled A1, A2, …, An

Derivation:

A process of obtaining string of terminals and/or Non-Terminals from the start symbol by 

applying some or productions is called derivation.

Ex.



Leftmost, Rightmost Derivations

Definition. A left-most derivation(LMD) of a sentential form is one in which 

rules transforming  the left-most Nonterminal are always applied.

Definition. A right-most derivation(RMD) of a sentential form is one in 

which rules transforming the right-most Nonterminal are always applied.

S   A | A B

A   e | a | A b | A A

B   b | b c | B c | b B

S  AB  AAB  aAB  aaB  aabB  aabb ( using LMD)

S  AB  AbB  Abb  AAbb  Aabb  aabb

In LMD, always pick up leftmost Nonterminal

In RMD, always pick up 

Rightmost  Nonterminal



Parse Trees(Example)

S   A | A B

A   e | a | A b | A A

B   b | b c | B c | b B

w = aabb

S

A B

AA Bb

a a b

Parse tree

S  AB  AAB  aAB  aaB  aabB  aabb



Consider the grammar G with Productions.

S  AbB

A  aA | ε

B  aB | bB | ε Obtain  LMD, RMD and Parse tree for the string : aaabab



Obtain a grammar for L ={ 0m 1m 2n | m  ≥ 0 , n ≥ 0 } and also give LMD , RMD and 

Parse tree for the string w = 0011222.

Designing of CFG: Problems contd...



Design a grammar for L = { an+1bn : n ≥ 0 } 

Obtain a  grammar for  L = { wwR : w ∈ {a,b}* and where wR is a reverse of w } 



Design a CFG  for the Language  L = { ai bj | i ≠ j , i , j ≥ 0 } 



Design a CFG  for the Language  L = { an bn-3 |  n ≥ 3 } 



For the regular expression  (011 + 1)* (01)*  obtain the Context – Free Grammar



Obtain  a CFG  to generate set of all strings with exactly one a over { a,b} 

Design   a grammar for the Language  L ={ w | na(w) = nb(w) }

S  bS | aB

B  bB | e

S  aSb | bSa | SS | e       Here S  SS take care of strings that starts and ends with  same 

symbol



Design a CFG to generate the Language L = { anbm :   n ≥ 0 , m > n }

Design   a grammar for the Language  L ={ w | n
a
(w) > n

b
(w) }   - Home Work



Design a CFG  for the Language  L = { an bm ck |  n+ 2m = k  &  n,m ≥ 0 } 



Ambiguity
Ambiguous Grammars

-A CFG is ambiguous if it generate more than one parse tree for 
some (or all) strings. When this happens ,we say that the grammar 
is ambiguous.

-More precisely, a grammar G is ambiguous iff there is at least one  
string in L(G) for which  G produce more than one parse tree
(Obtained by applying either LMD or RMD).

-It is easy to write ambiguous grammars, if we are not careful. But 

such Grammars undesirable for many applications.

-Ambiguity can be a problem in things like programming
languages where we want agreement between the programmer
and compiler over what happens

Why care?



Is the following grammar ambiguous?

SAS | ε

AA1 | 0A1 | 01

Examples-1

S AS  A1S  0A11S  00111S  00111ε ----- (LMD)

S  AS  0A1S  0A11S  00111S  00111ε ----- (LMD)

Take a string w = 00111



Example-2: The Balanced Parentheses Grammar is Ambiguous

L = {w ∈ { ), ( }* : the parentheses are balanced} is ambiguous.

G:   S → (S)

S → SS

S → ε

Take w = (())()

In fact, G can produce an infinite number of parse trees for the string (())().

Since there exist two parse trees, Hence G is ambiguous 



Example-3: Expression Grammar

E E + E | E – E | E*E | E / E | (E) | id    is ambiguous ?   

let  w: id + id * id 



Home work
Show that following Grammars are ambiguous:

1. S aB | bA

A aS | bAA | a

BbS | aBB | b           { take w = aabbab }

2. S  iCtS | iCtSeS | a

C  b                         { w = ibtibtaea } 

3. S  AB | aaB

A  a | Aa

B  b                          { w = aab }

4.  S  aSbS | bSaS | ε { w = aababb }



1.  S aB | bA

A aS | bAA | a

BbS | aBB | b           { take w = aabbab }

S  aB {  S aB }

 aaBB {  B aBB }

 aabSB {  B  bS }

 aabbAB {  S  bA }

 aabbaB {   A a          }

 aabbab {  B  b         }

S aB { S aB }

 aaBB { B  aBB }

 aabB { B  b         }

aabbS { SbS }

aabbaB { S aB }

aabbab { B b         } 

LMD-1 LMD-2



4.  S  aSbS | bSaS | ε { w = aababb }

S  aSbS {S aSbS }

 aaSbSbS { S aSbS }

 aabSaSbSbS { S  bSaS }

 aabaSbSbS {  S  ε }

 aababSbS { S ε }

aababbS { S ε }

 aababb { S ε }

S  aSbS {S aSbS }

 aaSbSbS { S aSbS }

 aabSbS { S  ε }

 aabaSbSbS {  S  aSbS }

 aababSbS { S ε }

aababbS { S ε }

 aababb { S ε }



Inherent Ambiguous Language

-In many cases, when confronted with an ambiguous grammar G, it 

is possible to construct a new grammar G that generates L(G) and 

that has less (or no) ambiguity. Unfortunately, it is not always 

possible to do this. There exist context-free languages for which no 

unambiguous grammar exists. We call such languages inherently 

ambiguous.

G: S → S1 | S2

S1 → S1c | A

A → aAb | ε

S2 → aS2 | B

B → bBc | ε

L = {anbncm | n, m ≥ 0} ∪ {anbmcm | n, m ≥ 0} is inherently ambiguous Language



Techniques for Reducing Ambiguity

-No Algorithms available to test for ambiguity in a grammars.

- No Algorithms or methods exist to remove Ambiguity from grammars

-But there do exist heuristics that we can use to find some of the more common 

source of ambiguity and remove them.

Techniques ( heuristics)

1. Elimination of ε productions from G

2. Elimination of Unit productions from G

3. Elimination of productions like SSS or E  E + E in G (Symmetric and body 

contains atleast two copies of the NTs )

4.  Elimination of useless symbols/Productions from G.



Eliminating ε-Productions 

Definition: Let G = (V,T,P,S) be a CFG . A Production in P of the form A

ε is  called ε-Production or NULL production

Ex.   S  ABCa | bD

A  BC | b

B  b | ε

C  c | ε

D  d

In this grammar, the productions: 

B  ε

C ε

are ε-Productions. 

To eliminate ε-Productions, we have to compute all Nullable variables in the grammar 



S  ABCa | bD

A  BC | b

B  b | ε

C  c | ε

D  d



Eliminate all ε-Productions from the grammar: 

S  BAAB

A  0A2 | 2A0 | ε

B  AB | 1B | ε



Eliminating Unit Productions

Definition: Let G = (V,T,P,S) be a CFG . A Production in P of the form 

A B is  called unit Production. The Presence of Unit productions in G 

can be source of ambiguity. 

Ex.:  Consider the Grammar

AB | C

B aB | b

Here: A  B and A C are  Unit Production.   BaB and B  b are 

non–Unit productions



Example:

Eliminate all Unit productions from the grammar:

S AB

A a

B C |b

CD

DE | bC

Ed | Ab



Eliminate unit productions from the grammar:

S A0 | B

B A | 11

A 0 | 12 | B



Practice Examples

2.Eliminate Unit production from the grammar below:

S  Aa | B | Ca

B  aB | b

C  Db | D

D  E | d

E  ab

1. Eliminate all ε-Productions from the grammar:

S  aSbS | bSaS | ε



Eliminating Symmetric Recursive Productions
( SSS , E  E + E etc. forms)

-Rewrite the grammar so that there is no longer choice

-Replace the production S  SS with one of the following production:

S SS
1      

/* force branching to the left

S S1S         /* force branching to the right

then we add the production S  S1

Example: Consider the grammar 

S  SS

S  (S)

S  ε

S SS1 

S  S1

S1 (S) 

S1 ε



Example:

E E + E | E-E |  E*E | E/E |  (E) | id

E → E + T | E-T | T

T → T * F | E/E |  F 

F → (E) | id

Ambiguous Grammar

Unambiguous Grammar



Eliminating useless Symbol

Definition:  A symbol X is useful , if there is a derivation of the foem:

S  αXβ  w

Otherwise , the symbol X is useless.

Example: Consider the grammar

S  aA | bB

A  aA | a

B  bB

D  ab | Ea

E  aC | d

Procedure:

Step1:  Compute Non-Generating symbols in G  and eliminate them.

Step2:  Computing Un-Reachable symbols in G and eliminate them.



Example: 1. Eliminate useless symbols in the  grammar

S  aA | bB

A  aA | a

B  bB

D  ab | Ea

E  aC | d       



2. Eliminate Useless symbols in the grammar below

S  aA |a | Bb |cC

A  aB

B  a | Aa

C  cCD

D  ddd



Consider the grammar G:

A  bA | Bba | aa

B  aBa | b | D

C  CA | AC | B

D  a | ε

1) Eliminate any ε-Productions.

2) Eliminate any unit productions

3) Eliminate useless productions, if any.



Consider the grammar G:

A  bA | Bba | aa

B  aBa | b | D

C  CA | AC | B

D  a | ε

1) Eliminate any ε-Productions.

2) Eliminate any unit productions

3) Eliminate useless productions, if any.



Normal form 
The restriction can be imposed on the right hand side of productions in a 

CFG resulting in various normal forms.  

1. Chomsky Normal Form ( CNF)

2. Greibach Normal Form (GNF)

Definition(CNF): Let G = (V,T,P,S) be a CFG. The grammar G is said to 

be in CNF, if all productions are of the form:

A  BC

or

A  a    

where A,B and C ∈ V and a ∈ T.

Definition(GNF): Let G = (V,T,P,S) be a CFG. The grammar G is said 

to be in GNF, if all productions are of the form:

A  aα

where α ∈ V* and a ∈ T.

Ex.   S → AB

A → a

B → b

This context free grammar is in  

Chomsky normal form.



Problems:

S 0A  | 1B

A  0AA | 1S | 1

B  1BB | 0S | 1

Convert the Following grammar to Chomsky Normal  Form:



Convert the Following grammar to Chomsky Normal  Form:

S → aAD

A → aB | bAB

B → b

D → d



Convert the Following grammar to CNF:

S → aAD

A → aB | bAB

B → b | D

D → d



S → aACa

A → B | a

B → C | c

C → cC | ε

Convert the Following grammar to CNF:



Practice Problems

1) 2)

3)

Convert the Following grammars to CNF:

4)



THANQ...



Module-3

Pushdown Automata(PDA)

-An introduction to PDA, Languages of the PDA
-Designing PDA 

-Deterministic and Non-deterministic PDAs

-Alternative equivalent definitions of a PDA 

Content



Introduction: An informal description of a pushdown automaton is shown in 

the  diagram below. Such an automaton consists of the following:

-There is a tape which is divided into cells.

-There is a tape head which can move along the tape,  one cell to the right per move.

-There is a stack containing symbols and special symbol $ or Z
0

-There is a state control, which can be in any one of a finite number of states.





Definition:

A PDA can be formally defined as a 7-tuple:   P = (Q, ∑, Γ, δ, q0, Z0, F)

Γ: A finite set of stack symbols

δ : The transition function: Maps  Q x {Σ ∪ ε} x Γ  Q x Γ*

q0 : The start state 

F: The set of Accepting states or final states

Z0 : The stack initial( bottom marker) symbol.



Example: A pushdown automata(PDA) for accepting L = { anbn : n ≥ 1 }



Moves of a PDA



Example: Show the moves made by PDA for the string “aaabbb”
Or

Give the sequence of IDs the PDA is in for the string “aaabbb”



Example: Design a Pushdown automata(PDA) for accepting L = { anbn : n ≥ 0 }

& also show the sequence of IDs for the string “aabb” .



Language of PDA

A language can be accepted by PDA using two approaches:

1. Acceptance by Final State: The PDA is said to accept its input by the 

final state if it enters  any final state in zero or more moves after reading 

the entire input.

Let P =(Q, ∑, Γ, δ, q
0
, Z

0
, F) be a PDA. The language acceptable by the final state 

can be defined as:

L(P) =

2.  Acceptance by Empty Stack

On reading the input string from the initial configuration, the stack of PDA gets 

empty.

Let P =(Q, ∑, Γ, δ, q0, Z0
, F) be a PDA. The language acceptable by empty stack can 

be defined as:
L(P)

Since set of accepting states are irrelevant, We shall sometimes leave off , seventh 

component from P.



What does each of the following transitions represent?

1. δ(p, a, Z)   = ( q , aZ)

2. δ(p, a,  Z)  = ( q ,  ε )

3. δ(p, a,  Z)  = ( q ,  B)

4. δ(p, ε , Z)  = ( q ,  B)

5. δ(p, ε, ε)   =  ( q ,  Z)

6. δ(p, ε,  Z)  = ( q ,  ε )



Designing PDA
Design a Pushdown automata(PDA) for L = { anb2n :  n ≥ 1 }



Design a Pushdown automata(PDA) for L = { a2nbn :  n ≥ 1 }



Construct a  PDA to accept the language  L = { wcwR | w ∈ {a,b} * and wR is reverse of 

w } by a final state 



Design a  PDA to accept the language  L = { wwR | w ∈ {a,b} * and wR is reverse of w } 

Moves by PDA: on “ aabbaa”



1. Obtain a  PDA to accept the language  L = { w ∈ {a,b}* |  Na(w) = Nb(w) }

2. Obtain a  PDA to accept the language  L = { w ∈ {a,b}* :  Na(w) > Nb(w) } by final state. 

3. Obtain a  PDA to accept the language  L = { w ∈ {a,b}* :  Na(w) < Nb(w) } by final state.

4. Design a  PDA to accept all the strings of  0’s and 1’s having substring 001.

5. Construct a PDA to accept strings of a’s and b’s ending with ab or ba.

Practice Problems



1. Obtain a  PDA to accept the language  L = { w ∈ {a,b}* |  Na(w) = Nb(w) }

2. Obtain a  PDA to accept the language  L = { w ∈ {a,b}* :  Na(w) > Nb(w) } by final state. 

3. Obtain a  PDA to accept the language  L = { w ∈ {a,b}* :  Na(w) < Nb(w) } by final state.

4. Design a  PDA to accept all the strings of  0’s and 1’s having substring 001.

5. Construct a PDA to accept strings of a’s and b’s ending with ab or ba.

Practice Problems





Equivalence of PDA and CFG

From Grammar to Pushdown Automata

-Given a CFG G, we Can construct a PDA that simulates the leftmost derivations of G.

Let G= (V, T, P, S) be a CFG. Construct the PDA P that accepts L(G) by empty stack 

such that L(G)  = L(P),   where  P= ( { q }, T, V∪T, δ, q, S)

Method:

1. For each variable A,  define  transitions:

δ(q, ε, A) =   { (q, β) | A→β is a production of   P }

2. For each terminal  a,  define transition:    

δ(q, a, a) = {(q, ε)}



Convert the following grammar into Equivalent PDA.

S  aABC

A aB | a

B  bA | b

C  a



1) For the grammar:

S aABB | aAA | ε

A aBB | a

B bBB | A

C  a               

Obtain the corresponding PDA

Practice Examples

2)  Convert the following CFG to PDA

S  aSa | bSb |aa | bb



THANQ….



Module-4

Algorithms and Decision Procedures for CFLs: 

-Decidable questions 

-Un-decidable questions. 

Turing Machine: 

-Turing machine model, Representation, 

-Language acceptability by TM, 

-Design of TM, 

-Techniques for TM construction. Variants of Turing Machines (TM),

-The model of Linear Bounded automata.

Content

TextBook-1: 14.1, 14.2      TextBook-2: 9.1 to 9.8 



The Decidable Questions
-Membership

Given a CFL  L and a string w, is w in L ?             -- Can be answered       

-Emptiness

Given a CFL  L ,  is  L = ⦰ ?                                     -- Can be answered

-Finiteness

Given a Context- Free Language L, is L infinite ?      -- Can be answered



Membership
Algorithm: Using Grammar

decideCFLusingGrammar(L: CFL, w: string) =

1.   if L is specified as a grammar G, simply use G. 

2.   if (w = ε) then if (S is nullable ) then accept else  reject. 

3.   if (w ≠ ε ) then 

3.1. From G, construct G' such that L (G') = L(G)-{ε} and G' is in CNF.    

3.2. if G’ derives  w  in  (2 * |w| - 1) steps then accept else reject. 



Example: Suppose  L = { anbn : n >= 1 }  

S  aSb | ab



Let G = (V, T, P, S) be a context-free grammar that generates L. L(G) = Φ iff S is

unproductive (i.e., not able to generate any terminal strings). The following

algorithm exploits the procedure remove unproductive(non generating) symbols

to remove all unproductive non-terminals from G. It answers the question,

“Given a context-free language L, is L = Φ ?”.

Emptiness

decideCFLempty(G: context-free grammar) =

1. Let G’ = removeunproductive(G).

2. If S is not present in G’ 

then return True 

else 

return False.

Algorithm



Example:

1)  S AB | Bb

A  a

2) S AB | B

A a |ε

B b



Finiteness
Let G = (V, T, P, S) be a context-free grammar that generates L. is L infinite? 

There exist an algorithm to decide whether L is finite or infinite.

1. Let G’ = G with ∈, Unit and Useless productions removed.

2. Draw a directed graph whose nodes are variables of the G’.

3. if ( graph contains a cycle) 

then

return true;         // L is infinite

else

return false;     //  L is finite

decideCFLinfinite(G: CFG) =

Algorithm



Example:

S AB | ab

A  a

B aD | b

D bE

E  e



The Undecidable questions

• Given a Context-free language L, is L = Σ*? 

• Given a CFL L, is the complement of  L context-free? 

• Given two context-free languages L1 and L2 is L1 = L2? 

• Given two context-free languages L1 and L2, is L1⊆ L2? 

• Given two context-free languages L1and L2, is L1∩L2=⦰? 

• Given a context-free language L, is L inherently ambiguous? 

• Given a context-free grammar G, is G ambiguous? 

Note: No algorithms or Procedures exist for all the above Questions as of now!



Turing Machine(TM)
In the early 1930s, mathematicians were trying to define effective 

computation.

Alan Turing in 1936, gave various models using the concept of Turing 

machines.

It is interesting to note that these were formulated much before the 

electro-mechanical/electronic computers were devised.

It has been universally accepted by computer scientists that the Turing 

machine provides an ideal theoretical model of a computer.

Turing machines are useful in several ways:

-As an automaton, the Turing machine is the most general model for accepting type-0 Languages

-It can also be used for computing functions  etc…



BASIC Model of TURING MACHINE(TM)

The Turing machine can be thought of as finite control connected to a R/W (read/write) 

head.

It has one tape which is divided into a number of cells. The block diagram of the 

basic model for the Turing machine is given in Fig.

Fig. Turing machine model

Each cell can store only one symbol. The input to and the output from the finite state 

automaton are effected by the R/W head which can examine one cell at a time.



In one move, the machine examines the present symbol under the R/W 

head on the tape and the present state of an automaton to determine:

(i) a new symbol to be written on the tape in the cell under the R/W 

head,

(ii) a motion of the R/W head along the tape: either the head moves one  

cell left (L) or one cell right (R),

(iii) The next state of the automaton, and

(iv) whether to halt or not.

BASIC Model of TURING MACHINE(TM) Contd…



Definition: 

A Turing machine M is a 7-tuple, namely (Q, Σ , , δ, qo, b, F),

where;



REPRESENTATION OF TURING MACHINES

We can describe a Turing machine by employing:

1. INSTANTANEOUS DESCRIPTIONS(IDs)

2. TRANSITION DIAGRAM(TD)

3. TRANSITION TABLE (TT)



REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS(IDs)

Snapshots' of a Turing machine in action can be used to describe a 

Turing machine. These give 'instantaneous descriptions' of a Turing 

machine.

An ID of a Turing machine is defined in terms of the entire input string 

and the current state.

An ID of a Turing machine M is a string αqβ , where q is the present

state of M, the entire input string is split as αβ , the first symbol of β is

the current a symbol under the R/W head and β has all the subsequent

symbols of the input string and the string α is the substring of the input

string formed by all the symbols to the left of a.



EXAMPLE:

A snapshot of Turing machine is shown in Fig., obtain the instantaneous 
.
description(IDs)



Representation of ID



REPRESENTATION BY TRANSITION DIAGRAM

We can use the transition diagram to represent Turing machines.

The states are represented by vertices. Directed edges are used to represent 

transition of states. Each edge has label described by triple ( x, y, D).

δ( p, x) = ( y, q, R)

Transition Diagram



REPRESENTATION BY TRANSITION TABLE

We give the definition of δ in the form of a table called the transition table

Consider, for example, a Turing machine with five states q1, ..., q5, where

q1 is the initial state and q5 is the (only) final state.The tape symbols are

0, 1 and b. The transition table given in table below describes δ.

The initial state is marked   

with  and the final state   
Transition Table



DESIGN OF TURING MACHINES

Design a Turing Machine to recognize all strings consisting of even number of 1’s.

Obtain the sequence of IDs to accept string : 1111

M = (Q, Σ, ,  , δ, qo, b, F)



Design a Turing Machine to accept strings of a’s and b’s ending with ab or ba



1. Design a Turing Machine to accept the L { w : |w| is even and w consisting of 

a’s and b’s }

2. Design a Turing Machine to accept the language containing strings of 0’s and  

1’s ending with 011}

Practice Problems

3. Design a Turing Machine to accept the language L = { w | w ∈ {0,1}* }  

containing the substring 001



Design  a TM that accept  L = { 0n1n | n ≥ 1 } 



Design  a TM to  accept the language  L = { anbncn | n ≥ 1 }. Draw the Transition 

diagram and show the moves made by TM for the string: “aabbcc” 



Design  a Turing Machine to  accept the language  L = { 1n2n3n | n ≥ 1 } 

Design a TM to accept the following Languages:

1) L = { wcw
R | w ∈ { a,b}  and wR reverse of w}



LANGUAGE ACCEPTABILITY BY TM

The Language accepted by TM is defined as follows.

Let                              be a Turing Machine. The Language L(M) 

accepted  by M is defined as:

L(M) = { w | q
0
w |*   αpβ , where w ∈ Σ* , p ∈ F and α,β ∈ }

Note: The TM can do one of the following:

1. Halt and accept by entering into final state

2. Halt and reject . This is possible if the transition is not defined.

3. TM will never halt and enters into an infinite loop.

No algorithms exist to determine and tell  whether TM always halts  Undecidable Problem 



Design  a TM to  accept all set of palindromes over { 0,1}. Also draw the 

transition diagram and Instantaneous Description(IDs) on “10101”.



TM to Compute a function

Obtain a Turing Machine to compute 1’s Complement of a given binary number.

Examples:



Obtain a Turing Machine to compute 2’s Complement of a given binary number.



1. Design  a Turing Machine to  accept the language  L = { anb2n | n ≥ 1 } 

SUPPLEMENTARY EXAMPLES(Languages)

2. Design  a Turing Machine to  accept the language  L = { w | na(w) = nb(w)  } 

3. Design a TM that reads a string in  {0, 1} * and erases the rightmost symbol.

Solution(2)



Acceptance by TM

Accept Input 
String

If machine halts 

in an Final/accept state 

Reject Input 
String

If machine  halts 

in a non-Final state

or

If machine enters 

an infinite loop



TECHNIQUES FOR TM CONSTRUCTION

-In this section: some high-level conceptual tools to make the construction  

of TMs easier for addressing simple/complex problems.

-The TM defined & studied  till now is called the standard TM(single Tape)

1.TURING MACHINE WITH STATIONARY HEAD

2. STORAGE IN THE STATE

3. MULTIPLE TRACK TURING MACHINE

4. SUBROUTINES

There are 4 Techniques:
A standard TM is capable of 

accepting some of the 

languages, called Recursively 

Enumerable(RE)  language. But 

by doing some kind of 

modifications, we can increase 

the number of languages 

accepted by Turing Machine.5. CHECKING OF SYMBOLS













Explanation with Example: TM to perform multiplication of  two positive integers



The Turing machine we have introduced has a single tape. δ(q, a) is 

either a single triple (p, a, D), where D = R or L, or is not defined.

In this section, we introduce two new models of TM:

(i) a TM with more than one tape.

(ii) a TM where δ(q, x) = {(q1 , y1, D1), {(q2, y2, D2), … ,(qn an, Dn ) } 

The first model is called a Multitape Turing Machine and the second   

a Nondeterministic Turing Machine.

Variants of Turing machines



i) Multitape Turing machines

A multitape TM has k tapes, each with its own read/write head.

Initially, the input is written on the first tape, and all the other tapes

are blank, with each head at the beginning of the corresponding tape.

For a 3-tape TM, a transition will look like

q1 q2

{ (0,1,1) ,(x,y,x) ,(R,R,L) }

If you are in state q1 and see 0 on Tape1, 1 on Tape2 and 1 on Tape3,

• replace x on Tape1, y on Tape2 and x on Tape3;

• move Head1 right, Head2 right and Head3 left;

• go to state q2.



Structure of  multitape TM

A move depends on the current state and k tape symbols under k tape 

heads.

In a typical move:

(i) M enters a new state.

(ii) On each tape, a new symbol is written in the cell under the head.

(iii) Each tape head moves to the left or right or remains stationary. The heads move  

independently: some move to the left, some to the right and the remaining heads do not  

move.



Ex. :  Addition of two Binary Numbers(discard final carry, if any)



Every language accepted by a multitape TM is acceptable by some 

single-tape TM (that is, the standard TM).

Definitions:

Running time: Let M be a TM and w an input string. The running time of 

M on input w, is the number of steps that M takes before halting. If M 

does not halt on an input string w, then the running time of M on w is 

infinite.

Time complexity: The time complexity of TM M, is the function T(n), n 

being the input size, where T(n) is defined as the maximum of the 

running time of M over all inputs w of size n.



ii) Non-Deterministic Turing machines(NTM)

A Nondeterministic TM is allowed to have more than 1 transition for a 

given tape symbol:

A string is accepted, if one of the branches of computation takes us to 

the accept state.

q1

q2

q3

(a, x, R)

(a ,y, L)

Note: Every Nondeterministic TM has an equivalent Deterministic TM (i.e. Standard TM). 



A Nondeterministic Turing machine is a 7-tuple

Definition:

(Q, Σ , , δ, qo, b, F),

Where:

Note: If q ∈ Q and x ∈ and δ(q, x) = {(q1 y1, D1), {(q2 , y2, D2), … ,(qn yn, Dn) } 

then the NTM can chose any one of the actions defined by (qi , yi, Di )  for i = 1. 2..... n.



Example: NTM to accept all the strings of a’s and b’s ending with ab or ba



THE LINEAR BOUNDED AUTOMATON(LBA)

A Linear Bounded Automaton(LBA) is a Non-Deterministic Turing

machine which has a single tape whose length is not infinite but

bounded by a linear function of the length of the input string.

This model is important because: (1) the set of context-sensitive

languages is accepted by the model. and (2) the infinite storage is

restricted in size.

It is called the linear bounded automaton (LBA) because a linear

function is used to restrict the length of the tape.

(A restricted form of Turing Machine)

LBAs are not as powerful as TM…



M = (Q, Σ , , δ, qo, b, ¢ , $, F) where

Q is finite nonempty set of states

Definition: The LBA can be described formally by the following set format:

is a finite set of tape symbols

b ∈ is called the blank symbol

Σ is a nonempty set of input symbol

qo is the initial state.

F ⊆ Q is the set of final states

δ is a transition function.

¢ , $ ∈ Σ are input left-end and right-end marker on tape  

respectively and are special symbols.  



Model of Linear Bounded Automata(LBA): Block diagram

Whenever we process any string in LBA, we shall assume that the input string is enclosed 

within the end markers ¢ and $.

$ is called the right-end marker which is entered in the rightmost cell of the input tape and 

prevents the R head from getting off the right end of the tape.

¢ is called the left-end marker which is entered in the leftmost cell of the input tape and prevents 

the R head from getting off the left end of the tape.

There are two tapes: one is

called the input tape, and the

other, working tape.

On the input tape the head

never writes and never

moves to the left.

On the working tape the head can 

modify the contents in any way, 

without any restriction.

Where k is a constant specified in the 

description of LBA.



The language accepted by LBA  M is defined as:

L(M)  = }

for some q ∈ F and for some integer i between 1 and n.

The Class of  Languages accepted by LBA is called Context-Sensitive 

Language.  
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Decidability:

1.The definition of an algorithm, Decidability. 

2.Decidable languages & Undecidable languages. 

3.Halting problem of TM. 

4.Post Correspondence Problem(PCP). 

Complexity:

1.Growth rate of functions, The classes of P and NP problems. 

2.Quantum Computation:Quantum computers.

3.Church -Turing thesis.

Textbook - 2: 10.1 to 10.7, 12.1, 12.2,12.8.1, 12.8.2

Topic: Decidability and Complexity



1. The definition of an algorithm, Decidability

-An Algorithm is a finite, well defined procedural steps to solve a

given task. The algorithm is terminated after finite number of steps for

any input.

Ex.: Algorithm to add two numbers.

Euclidean algorithm for computing GCD of two natural numbers.

The formal definition of algorithm emerged after the works of Alan 

Turing and Alanzo Church in 1936.

The Church-Turing thesis states that any algorithmic procedure that 

can be carried out by a human or a computer, can also be carried out 

by a Turing machine.

Thus the Turing machine arose as an ideal theoretical model for an 

algorithm.



As an algorithm terminates eventually, the TM also terminates. The TM

halts in following two situations:

1.When a TM reaches a final state, it halts (accepting string)

2.When a TM is in some state q & next input symbol is „a‟ and if the

transition δ(q, a) is not specified, it halts(rejecting string) .

But, there are some TM that never halt on some inputs in any of the

above situations.

So, we have to make a distinction between the language that are

recognized by TM & Halts on all input strings and a TM that never halts

on some input strings.

Decidability:



Recursively enumerable(RE) Language: A Language L ⊆Σ* is RE iff there

exist a TM such that L = T(M), where T(M) is the language accepted by

Turing Machine.

Recursive Language: A language L ⊆Σ* is recursive if f there exist a 

Turing Machine M  that satisfy the following two conditions:

(i) if w ∈ L  then w is accepted by M on reaching the accepting state  

& M halts.

(ii) if w ∉ L then M eventually halts, without reaching an accepting 

state.

Note: The Conditions (i) and (ii) assure us that the TM always halts, accepting w

under condition (i) and rejecting under condition (ii).



A problem/Language with two answers (Yes/No) is decidable if the

corresponding language is recursive. In this case, the language L is also

called decidable.

Decidable Language

A problem / Language is undecidable if it is not decidable.

Note: A decidable problem is called a solvable problem and an 

undecidable problem an unsolvable problem.

Undecidable Language



2. Decidable and undecidable  Language
In this section, we consider the decidability of regular and context-free languages.



Theorem: if ADFA = { < B, w > | B is DFA  that accept w }, then  ADFA   is decidable. 

Proof: Let B = ( Q, Σ, δ, q0,F ) be a DFA. We have to construct a TM M that always

halts & accepts L(B). We know that DFA always ends in some state after reading the

string w.

Now, we can construct a TM M that simulate DFA as follows:

1) Let B be a DFA & w an input string. <B, w> is an input for the Turing machine M.

2) Simulate B and input w in the TM M. Here, TM M checks whether input <B,w> is valid

input. If <B,w> is invalid then TM M rejects and halts. If <B,w> is valid input, M writes

the initial state q0 and leftmost input symbol of w. It updates the state using δ & reads

the next symbol in w.

3) If simulation ends in an accepting state of M, then TM accept <B,w>. Otherwise, M

rejects <B,w>.

It is evident that M accepts <B, w> iff w is accepted by the DFA B.

Hence, ADFA is decidable Language.



Does there exist a TM that accepts all members of ADFA and rejects all other inputs? 

(i.e. does it always halt )

Is Language ADFA decidable? 

Algorithm: Input <B,w> where B is a DFA & w an input string

1. Start

2. TM M , simulate B on string w

3. If simulated B ends in accept state  

then  accept <B,w> and halt.

4. If simulated B ends in non-accepting state  

then reject <B,w> and halt.

5. Stop

Since , there exist  an algorithm to answer the problem.

Hence , ADFA is decidable.  





Definition:  ACFG = { < G, w > |  the Context-Free Grammar G accepts the input string w }

Is ACFG decidable Language? 

Proof. We convert a CFG into CNF. Then any derivation of w of length n requires 2n-1 

steps, if the grammar is in CNF. So, for checking whether the input string w of length n is 

in L(G), it is enough to check derivation in 2n-1 steps. We know that there are only finitely 

many derivations in 2n-1 steps.

Now, we design a TM that halts as follows:

1) Let G be a CFG in CNF & <G, w> is an input string for TM M.

2) if n = 0, list all the single-step derivations. 

3) if n ≠ 0 list all the derivations with 2n-1 steps.

4) if any of the derivations in step 2 or 3 generates the string w, then M accepts  <G,w > & 

halts. 

else

M rejects <G, w> & halts.

Prove that  CFL is decidable Language

Or

<G, w> is represented by representing the four 

components (V,T,P,S ) of G and input string w. The next 

step of the derivation is got by the production to be applied.



Example: Consider the CFG  for L = { anbn | n >=0 }

S  aSb | ε and  w = aabb



Undecidable Problems…

1.The Post Correspondence Problem(PCP)

2.Halting Problem of Turing Machine



1.THE POST CORRESPONDENCE PROBLEM

https://www.youtube.com/watch?v=VZNN1OGoqr8

The Post Correspondence Problem (PCP) was first introduced by Emil 

Post in 1946. Later, the problem was found to have many applications 

in the theory of formal languages.

The problem over an alphabet Σ belongs to a class of yes/no 

problems and is stated as follows:

Consider the two lists x =(x1,x2 … xn), y = (y1,y2,…yn) of nonempty strings over an 

alphabet Σ. The PCP is to determine whether or not there exist i1,i2…im
where 1≤  ij ≤ n, such that    xi1….xim = yi1…..yim

Note: if there exists a solution to PCP, there may exist infinitely many solutions.

https://www.youtube.com/watch?v=VZNN1OGoqr8






1. Does the PCP with two lists x = (b, bab3, ba) and y = (b3, ba, a) 

have a solution?

2. Find at least two solutions to PCP defined by the dominoes:

Practice Problems:



2. HALTING PROBLEM OF TURING MACHINE

Given a TM M and an input string w with the initial configuration q0w,

after some( or all) computations, does the machine M halts on w ?

Alan Turing ,in 1990 proved that the halting problem of TM on input w is

undecidale.

A reduction Techniques may be used to prove the undecidabilty of halting

problem of a TM. Using this techniques , a problem A is reducible to

problem B if a solution to the problem B can be used to solve the

problem A.

Thus,

-if A is reducible to B and B is decidable , then A is decidable.

-if A is reducible to B & B is undecidable, then A is undecidable.



Block diagram of a Halting machine:

Key point: Turing machine can be encoded as string, and other Turing 

machines can read those strings to perform “simulations”



Theorem: The Language HALTTM = { <M ,w> | the TM M halts on input w } 

is undecidable.  

Proof: We assume that HALTTM is decidable and get a contradiction. Let M1, be the 

TM such that T(M1) = HALTTM & let M1 halts eventually on all <M,w>. We construct a 

TM M2 as follows:

1) For M2, <M,w> is an input.

2) The TM M1 acts on <M, w>

3) if M1 rejects <M,w> then M2 rejects <M,w>

4) If M1 accepts <M,w>, simulate the TM M on  the input string w until M halts.

5) If M has accepted w, M2 accepts <M,w>; otherwise M2 rejects <M,w>.

When M1 accepts <M,w> (in step 4), the TM M halts on w.

In this case either accepting state q or a state q‟ such that δ(q‟,a) undefined on „a‟ is

reached.

In the first case ( the first alternative of step 5) M2 accepts <M,w>.

In the second case ( the second alternative of step 5) M2 rejects <M,w>.

It follows from the definition of M2 that M2 halts eventually.

But, T(M2) = { <M,w> | The TM accepts w}  is undecidable which is a contradiction. 

Therefore, the Language HALTTM is undecidable.



Important Questions on: Module-5

1. Define an  algorithm and Explain with example.

2. Write short notes on: i) Recursively enumerable Language ii) Decidable Language.

3. if ADFA = { < B, w > | B is DFA  that accept w }, then  show that ADFA   is decidable.

4. What is Post Correspondence problem? Explain with example.

5. What is Halting problem of Turing Machine? 

6. Show that HALTTM = { <M ,w> | the TM M halts on input w } is undecidable.

7. Define the following: i) Quantum Computers ii) Class P and  NP problems

8. Explain Church -Turing Thesis.



Topic: Complexity

When a problem/language is decidable, it simply means that the problem is

computationally solvable in principle.

It may not be solvable in practice in the sense that it may require enormous

amount of computation time and memory.

P stands for polynomial time: this class of problems that can be solved by a

deterministic algorithm in a polynomial time.

NP stands for Non-deterministic problem: this class of problems that can be

solved by a nondeterministic algorithm in a polynomial time.



1. GROWTH RATE OF FUNCTIONS



when we have two algorithms for the same problem, we may require a

comparison between the running time of these two algorithms.

Definition: Let f , g : N  R+ (R+ being the set of all positive real

numbers). We say that f(n) = O(g(n)) if there exist positive integers C and 

N0 such that f(n) ≤ Cg(n) for all n ≥ N0 .

In this case we say f is of the order of g (or f is 'big oh' of g)

Ex.: Let f(n) = 4n3 + 5n2 +7n +3.  Prove that  f(n) = O(n3)

In order to prove that f(n) = O(n3),  Take C= 5 & N0 = 10.

Then f(n) = 4n3 + 5n2 +7n +3 ≤  5n3 for n ≥ 10 . 

Then, f(n) = 0(n3)



Ex.: If  p(n) = akn
k + ak-1n

k-1 + ….. a1n
1 + a0 with ak >0. 

Then p(n) = O(nk)



Ex. Obtain a time complexity of a TM which accepts L = { anbn | n ≥ 1}

Solution:

Step1: Consist of going through the input string anbn forward and  

backward and replacing leftmost „a‟ by x & the leftmost „b‟ by y. 

So, we require at most 2n moves to match „a‟ with a „b‟.

(i.e. Total number of moves = 2n)

Step2: The step1 is to  be repeated for n times for each „a‟.

Hence the number of moves for accepting anbn is at most (2n)(n)  

For strings not of the form anbn , TM halts with less than 2n2 moves.  

Hence , the time (running time) complexity is given by O(n2).

i.e. T(M) = O(n2)



2. The Class P & NP Languages

In this section we introduce the classes P and NP of languages.

Definition: A Turing machine M is said to be of time complexity T(n) if the 

following holds: Given an input w of length n. M halts after making at most T(n) 

moves.

Note: In this case. M eventually halts. Recall that the standard TM is called a deterministic 

TM.

Definition:  A language L is in class P if there exists some polynomial T(n) such 

that L = L(M)  for some Deterministic TM  M of time complexity T(n).



Obtain a time complexity of a TM which accepts L = { 1n2n3n | n ≥ 1}

Solution:

Step1: Consist of going through the input string 1n2n3n forward and

backward and replacing leftmost „1‟ by x , the leftmost „2‟ by y and  

leftmost „3‟ by z . So, we require at most 4n moves. 

(i.e. Total number of moves = 4n)

Step2: The step1 is to  be repeated for n times for each „1‟.

Hence the number of moves for accepting 1n2n3n is at most (4n)(n)  

For strings not of the form 1n2n3n , TM halts with less than 4n2  moves.  

Hence, the time (running time) complexity is given by O(n2).

i.e. T(M) = O(n2)



Definition: A language L is in class NP if there is a Non-Deterministic

TM M and a polynomial time complexity T(n) and M executes in at most T(n)

moves for every input w of length n.

We have seen that a Deterministic TM M1 simulating a Non-Deterministic TM

M exists. If T(n) is the complexity of M, then the time complexity of the

equivalent Deterministic TM M1 is: 2O(T(n))



3. Church-Turing Thesis (1930)

Church-Turing‟s thesis is stated as : Any “ effective computation” or “any

algorithmic” procedure that can be carried out by a human being or a

team of human being or a computing machine can be carried out by

Turing Machine.

In other words , there is an effective procedure to solve a decision problem P if 

and only if  there is a Turing Machine that answer YES on input w ∈ P and NO 

on input w ∉ P.

The Church-Turing thesis predicts that it is able to construct models of

computations more powerful then the existing once.

Thesis also states that we cannot go beyond Turing Machines or their

equivalent. Since there is no precise definition for “effective computation”,

or “Algorithmic procedure” Church‟s thesis is not a mathematically precise

statement today.



Any algorithmic process can be simulated efficiently by a Turing machine.

But a challenge to the strong Church-Turing thesis arose from analog computation.

Certain types of analog computers solved some problems efficiently whereas these

problems had no efficient solution on a Turing machine. This led to the

modification of the Church thesis.



4. Quantum Computer

Referee text book or internet for theoretical note of Quantum Computer… 


