WELL COME TO

Automata Theory and Computability
Course(18CS54)

Course i/c : Dr.S G Gollagi

Module-|

. ﬁf zContent to be covered:

;‘h Why study the Theory of Computation, Languages and Strings:
g v Central Concepts of Automata Theory: Alphabets, Strings, Languages
v A Language Hierarchy

Finite State Machines (FSM):

Introduction
Deterministic FSM,
Regular languages, Designing FSM,
Nondeterministic FSMs,
Simulators for FSMs,
Minimizing FSMs,

D N N NN

v Canonical form of Regular languages,
Finite State Transducers, Bidirectional Transducers.
(Textbook 1: Ch 1,2, 3, 5.1 to 5.10)

What Is Automata®?

: 3Automata Theory is a branch of computer science
“that deals with designing abstract self-propelled

- W

i Lcomputing devices that follow a predetermined
¥ ksequence of operations automatically.
A n automaton with a finite number of states is called

* fa Finite Automaton

Y NS

-

Why StUdy the Theory of
: : Computation or automata
theory?

Implementations come and go.

. "t) LRy - . '\‘.
\ A et b - MR] . »
, P , Y = ahe ST RN R
m' ‘ M’ v ? O ‘d e . e T SatL |
f & > . - [, W
‘ : : 'y M gy
..m ,ﬁlwwx b \" B .w‘

IBM 7090 Programming in the 1950’s

ENTRY SXA 4, RETURN
LDOQ X
FMP A
FAD B Ax? + Bx +C
XCA
FMP X
FAD C
STO RESULT
RETURN TRA 0
A BSS 1
B BSS 1
C BSS 1
X BSS 1
TEMP BSS 1
STORE BSS 1

END s

Goals of Problem Solving

: :sPrlnupIes of Problems:

“» Does a solution exist?
— If not, Is there a restricted variation?

< e Can solution be implemented in fixed
§¢ memory?
; & Is Solution efficient?

— Growth of time & memory with problem size?

{3 3 e AR

3

Applications of the automata
Theory

Used in design of Lexical analyzer of compilers which breaks
source program into tokens like identifies, Keywords etc..

Software for designing and checking the behavior of the Digital
circuits.

FSMs (finite state machines) for vending machines, Traffic
signals, communication protocols, & building security devices.

String Matching: Searching words, phrase and other pattern in
large bodies of text(like web pages)

Interactive Computer games as nondeterministic FSMs.

Used in Natural languages processing: for speech to text and text
to speech conversions.

Artificial Intelligence: Medical Dignosis,Factory Scheduling etc..

Theory

(Alphabets, Strings, Languages etc.)

The Central Concepts of Automata 9

This is one of MOST important Section.
It includes the TERMINOLOGY required to be
successful in this course.

KNOW this section & ALL DEFINITIONS!!

Alphabet - ¥

* An alphabet Is a non-empty, finite set of
characters/symbols

« Use X to denote an alphabet

T Rl
T W W P PP R ||
PRI TR o= v e i ¥

 Examples
>={a,b}
>={0,1,2)}

> ={a,b,c,...z,AB,...Z}
> ={#9%* @, &}

String

;; * A string Is a finite sequence, possibly
“ empty, of characters or symbols drawn
from some alphabet .

* ¢ IS the empty string

© « ¥* is the set of all possible strings over an
“§ alphabet .

[

10

Example Alphabets & Strings

Alphabet name

Alphabet symbols

Example strings

The lower case
English alphabet

{a, b, ¢, .., z}

€, aabbcg, aaaaa

The binary
alphabet

{0, 1}

g 0,001100,11

A star alphabet

P, O, 5, %, 9 v

€, W, kK dokve

A music
alphabet

ford i D00 @)

£ dorood

11

Functions/Operations on String

Length:
 |s|is the length of string s
 |s| is the number of characters in string s.

€] =0
11001101 =7

#.(s) Is defined as the number of times that c occurs in s.

Ex. : #_ (abbaaa) = 4.

12

Powers of an alphabet:
Let > be an alphabet.

o >k = the set of all strings of length k
©o3*=35°US'US2U ...
eSS+ =S 32U S3U ..

For example: Y°={¢e} , k=0

>3 ={000, 001, 010, 011, 100, 101, 110, 111}
k=3

13

*
Z = Kleene closure

;3 » X*Is defined as the set of all possible
1 strings of any length that can be formed
from the alphabet X

—2*Is a language

§ * X* contains an infinite number of strings
£ —3>*is countably infinite

14

>* Example

Let X = {a, b}

15

+ .
Z = Positive closure

o Definition: The set >+ is the infinite set of all
possible strings of all possible lengths over)
excluding e.

o Representation->*=5>, U, U.......
(or) 27 =2" - {g}
o Example - If) ={a, b},
then }+={a, b, aa, ab, bb, ba,........... }

16

Other functions on Strings

Concatenation: the concatenation of 2 strings s
and t is the string formed by appending t to s; written
as sl|t or more commonly, st

Example:
If X = good andy = bye, then xy = goodbye
and yx = byegood

- Note that |xy| = [x]| + |V

* ¢ s the identity for concatenation of strings. So,
VX (X € =¢€X=X)

« Concatenation is associative. So,
Vs, t, w ((st)w = s(tw))

17

Replication: For each string w and each natural
number k, the string w X is:

18

Reverse: For each string w, w R is defined as:

If

If

W

W

=0thenwR=w=c¢

=1lthenwR=w

If |w| > 1 then:

da e £ (du € * (w = ua))

So define wWR=a uR

19

A Language

A language is a (finite or infinite) set of strings over a (finite)
: :3 alphabet .

f% Examples: Let X = {a, b}

¥ & Some languages over ¥

L, = ={} /lthe empty language, no strings

L, = {c} /I language contains only the empty string
U B L; ={a, b}

i L, ={¢, a, aa, aaa, aaaa, aaaaa}

- so on...

20

%
&

Description Languages

> Remember we are defining a set
 Set Notation:
L ={w e X* | description of w}
L ={w e {a,b,c}* | description of w}

« “Description of w” can take many forms but
must be precise

2 + Notation can vary, but must precisely define

21

Example Language Definitions

&
a

S L={we{a b} | all a’s precede all b's}

BB TFRRT

85 * aab,aaabb, and aabbb are in L.
£ 5 * aba, ba, and abc are notin L.

22

Example Language Definitions

Let X = {a, b}

e L={weZ*: |w| <5}

« L={w e Z*| w begins with b}

e L={weZ|#,(w)=2}

« L={w e X*|each ais followed by exactly 2 b’'s}
« L={w e X*| wdoes not begin with a}

. — s
BB TFRIRT =05

The Membership Problem

Given a string w €3 *and a language L over
decide whether or not w L.

Example:
Let w= 100011

Q) Is w € the language of strings with equal
number of Os and 1s?

24

Operation on Languages

- Cardinality of a Language: the number of strings
In the language L.

 Denoted as |L|

« Smallest language over any ¥ iIs &, with
cardinality O.

* The largest is Z*.

25

Concatenation of Languages

Definition 1. Given languages Ly and Lo, we define their concatenation to be the language Ly o
Ly={zy|z € L1, y€ Lo}

Ezample 2. o Ly = {hello} and Ly = {world} then L; o Ly = {helloworld}
o L1 ={00,10}; Ly ={0,1}. L1 o Lo = {000,001,100, 101}

o [y =set of strings ending in 0; Ly = set of strings beginning with 01. Lq oL = set of strings
containing 001 as a substring

¢ Lofe}=L. Lol=

Other Examples:

L, = {cat, dog}
L, = {apple, pear}

L, L, = {catapple, catpear, dogapple, dogpear}
L,L,= {applecat, appledog, pearcat, peardog}

Others Operations....

¥ £ Kleene Closure: L* = U L=lULlUL2U...
B i=0
2 Positive Closure: L+ = U Li=LlUL2U...

A Language Hierarchy

Generator vs. Recognizer

Reminder...

Given a problem, we can develop a machine
(automaton) that

 Generates a solutions

OR

* Recognizes a solution

! W S W W -
TR

Generator vs. Recognizer

Example
Given 2 integers A & B, determine the sum.

» Generator: Write a program to accept A & B as input
then compute the sum A+B

* Recognizer: Write a program to accept A& B & C as
iInput then determine if A+B = C

We usually write Generators! But when would an
Recognizer be an appropriate solution?

Decision Problems

A decision problem is simply a problem for which the answer is yes or
no (True or False).

A decision procedure answers a decision problem.

Example
« Given an integer n, does n have a pair of consecutive
Integers as factors?

The language recognition problem: Given a
language L and a string w, isw in L?

Our focLs

—

Turning Problems into Decision Problems

= Casting multiplication as decision:

* Problem: Given two nonnegative integers, compute the
product.

« Encoding : Transform computing into verification.
» The language:

L = {w of the form: integer,>x<integer,>=<integer,;>,
where: <integer,> is any well formed
Integer, and integer, = integer, *
Integer, }
12x9=108

12=12
12x8=108

D=decidable
SD = Semidecidable

A Hierarchy of Languages

5D Languapes

D Languages

Context-Free
Languages

Turing Machines

Chomsky Hierarchy of Languages

B
-

2 Languages from “simplest” to "complex”
i Each is a subset of the ones below
| Regular

“ » Context Free

= * Context Sensitive

1K Recursively Enumerable

.
s S
r il F' £
w e & £

2 B Can be defined by the type of
Machine that will recognize It.

Noam Chomsky 7

Regular Languages

A Regular Language iIs one that can be recognized by a Finite State
Machine.

An FSM to accept a*b™:

Context Free Language

A Context Free Language is one that can be recognized by a Push
Down Automata.

A PDAto accept A"B" = {a"b": n > 0}

Decidable & Semidecidable Languages

5 A Decidable Language Is one that Is recognized by a
Turing Machine which halts on all input strings.

§ & A Semidecidable Language is one that is recognized by a
% & Turing Machine which halts on all input strings which are in
& the language, but may loop infinitely on some strings which
“ & are not in the language.

10

~ 5. FINITE STATE MACHINE(FSM)

»The simplest and most efficient computational device that we will consider
is the Finite State Machine (FSM).

¢ s »A Finite State Machine (or FSM) is a computational device whose input is a string and

¢ whose output is one of two values that we can call Accept and Reject.

(FSMs are also sometimes called finite state automata or FSAs.)

E, i 1
W v o
B, L o ¥ u
E A R = ' £
LR, ‘f - ol = é £ "

% & I35 FSM, the npu sfring 15 fed fo M one claracter ataf, left fo ight, Each e frecerves a characte,)
N considers fscurren safe and the new character and chooses a nextstafe. One or more of J's sates tuay be marked

o asacceptng safs, I Mnmsmtof put and 5 1 an aceeptng sate, 1 aceepts. 1, however, } runs ut of imput and
S 15 00t 10 an aceepting state, it reects. The number of steps that M executes on uput v 15 exactly equal to . s0 M

always hlts and eher accets or reects

e ExXample: Finite Automaton modelling an
on /off switch

Push
Start
H-*
Model of Computation:
Push P

A program

e ExXxample: Finite Automaton recognizing the
string then

Deterministic FSM(DFSM)
Definition 2.2.1 A finite automaton is a 5-tuple M = (), X, 0, q, F), where

1. () 1s a finite set, whose elements are called states,
2. Y is afinite set, called the alphabet; the elements of X are called symbols,
3. 0:0) x X — () is a function, called the transition function,

4. q1s an element of (); it is called the start state,

- T : " m
R & L . .
I LT W W T T L LA

5. F'is a subset of (); the elements of F' are called accept states.

" Language Accepted by FSM:

Definition 2.2.3 Let M = (Q), X, 9,q, F') be a finite automaton.
guage L(M) accepted by M is defined to be the set of all string
accepted by M:

L(M) ={w: wis a string over ¥ and M accepts w }.

Definition 2.2.4 A language A is called regular, if there exists a finite au- 5
tomaton M such that A = L(M).

Designing of DFSM (Pattern Based Problems)

' ol
B

o MWDesign DFSM to:

3 i Accept all the strings of a’s and b’s

fgz Accept all the strings a’s and b’s begin with b

' ""'_c Accepts all the strings of a’s and b’s ending with ab

3 Recognize all the strings of 0’s and 1’s having substring 011

M Bb. L={w:#aw)21,Z={ab}}

. Obtain a DFSM to accept to accept strings of a’s and b’s starting with
W B the sub-string ab.

B 7. Obtain a DFSM to accept all strings of a’s and b’s ending with

. & the string abb.

. @8. Obtain a DFSM to accept all strings of a’s and b’s which do not ending with the
string abb

14

3. Accepts all the strings of a’s and b’s ending with ab

@y reak, Bl

[LA PE)

o= Emaffzt—

15

A Ré/cggnize all the strings of 0’s and 1’s having string 011
= i.e.L={w € {0,1}* | each w contains a sub-string 001}

5—’—1 D!\L) _

7@ = >ﬁz '3 W
D e TGDL AR

o 16

S5.L={w:#aw)=21,2={ab}}
6. Obtain a DFSM to accept to accept-strings-of a's and

b’s starting with a string ab oy K
=<
S) o« T
NPID N BT
N

o _ha k)
: 7@ tf_?\f_ﬂkh\"'
5

17

+1nt Ao Vot 6\)

‘77 abtain a DFSM to accept all strings of a’s and-b’s ending-with the substring abb

P U

y

L]
Sh
e

58 Obtain a DFSM to accept all strings of a’s and b’s which do not

ending with the substring abb

19

S
btaln DFSM to accept strings of 0's and 1's havmg three consecutive

s s \\

| O O @dg\éL

20

. 10. Construct a DFSM for L= {wbab | w € {a,b}* } and show the moves
made machine on: ababab
= g
GL—

Wit

i - i 1,'-l|. o
“ o o0 P I

= iR B8

Ao

21

11. Obtain a DFSM to accept strings of a’'s and b’s en@ ab or ba
~_

”“‘I
£ B =y [
'GP P

é;‘ 7SS
9. 9 1,
q| ql C\’I_
] e SR
B G\L|_ D{?
1,
- H '
T
- g =]
=N,y 7

:@I 2. Construct a DFSM to accepts all the strings of 0's, 1's and 2's _
-_ beginning with ‘0’ followed by odd number of 1's & ending with 2’

o o @ é—:ﬁ@/\

V_(q oo, t Lt

\:”—17 5757 i— YU”,L\

Z]

23

#.13. Obtain a DFSM to accept strings of a’s and b’s with at most two_

—

= consecutive b’s S—{n b — | aloig, daa
— “Z*" D Bogg /

&, Abls

24

L
7-14. Design a DFSM for the L = { w: #,(w) <3, w € {a, b}*}

= =, & L h $
» = bbaalbog

p |

7

B

25

'} *15.Construct DFSM for L ={w € {a,b}* | w contains-re-more-thanoneb}
: <

.
-

=

7 —
wd

b A

5

7.

[|

,

" .

[W

b

[

B

0\
A DQ\ \gel% o

—_—

D\)— d\Abdﬁ\L(«— Q E

L %751 9

26

b\b\

2l by |0l

v b
o
§Obtain a DFSM for L =w € {0,1}* | w has 001 as @tring }

LA
iy
7

| ¢

Ol

L= {w€ {a,b}*: whas neither ab nor bb as a substring}.
z du v b

rCA_,

28

L=1{we {a.b}*:every a 1s immediately followed by a b

29

C \ O

A = {w: w is a binary string containing an odd number of s},

[
o PRT=ANIYE
ot D o
o o SN

30

; *Design a DFSM for L = {w € {a,b}* | w contains even number of a’s &
* odd number of b’s }

.= *Design a DFSM for L = {w € {a,b}* | w contains even number of a’s &
= even number of b’s }

G

o
&
i
-
]

dr

E Nl W b
i dd gy ww L
] 6\/1/‘/\ C/{'\/@&k L'K

v hd 't vdd bt

3 v B
L R e i
il =T

|
Ty {291
AN /9(1
4
L’D:dﬂkh_lolq (/_LIL/J: L\b[’\\o\o :_,_\

31

4 o = &

=*Draw a DFSM to accept decimal strings which are divisible by 3 éLﬁ
N | oz I -~

L g/a-oY TEheiay ¢ g
" /1= 72

|b'/.43_:_ |

1.'?-9'
=Draw a DFSM to accept the Language L = {w : w has odd number of 1's and followed
“by even number of 0's }

P

{
2 OO0 L

33

Z-Obtain a DFSM to accept the Language L={ W lw| mod 3 = 0} on 2 ={a,b}}
~.-Obtain a DFSM to accept the Language L={ w : |w| mod 3 # 0} on X ={a,b}}

G

34

Non-Deterministic FSM(NDFSM)

Definition:
[D
M=(Q, =, 8, q,, F), where: o~ j’ﬁ —))
. 1S a finite set of states / 2 \f
S : is an alphabet™ CS (ﬂ‘ é

go €Q : Is the initial state
F < Q: Is the set of accepting states, and
. is the transition relation. Qx(X u {e}) 229

- S

— = — _—

2 & Accepting by an NDFSM Q<& — &
,- i M accepts a string w iff there exists some path along which w drives M to some

—_—

7

B clement of A. Ji

s The language accepted by M, denoted L(M), i @- of all strings
g% accepted by M. ‘ —
- [\/\) J 1 oo

35

Sources of Non-determinism

What differ from determinism?

36

A
L%

- L
‘{"
B N
L]
: A
- ";-r
=2
)
N
-

Why NDFSM? - Dron
= —

ery easy to construct ik
Has the ability to guess sorﬁething about its input
is more powerful than DFSM
Has power to be in several states at a time

37

7 .
=1. Constructa NDFSM to accept L ={w | w ends with ab, ~ ={a,b} }
-i;ngraW the Transition table(TT) and show the moves made by m/c on: baab (fL

g e

1,4 Nals

R

\c@ (O SJELICEE
e L
(NI

T

F(A“f’r{fp\}
[— Rejrt .

£.2. Obtain an NDFSM to accept L ={ w | w € ababn or ab", where n 2 0}

o s —= (1)
: - M)
() 4 - e o])
), —\zf’ TL

39

3:Design an NDFESM for L = {w | w contains the substring 0101 , ¥ ={ 0,1} }
| b |

1%; B /‘Vk L\JV]* Lty

b 9 M)— L\ Q\bll‘ ‘u'g.\ﬁ '

2 |

1.4-!"

‘*4 Write an NDFSM to accept string of a’s and b’s ending with ab or ba

Ib.-l-.

<S

/
L@

—Q>

[c,bgb_fjj_’u
~ ~—

q@m L
Koo

41

5 L ={w e {a, b}* : wis made up of an optional a followed
% by aa followed by zero or more b’s}.

E
() ()
d

M=(Q,Z, 0, qy F) = ({90, 91, 9, , 93}, {a, b}, 0, dp, {ds})

42

1.'?:-;!'
~6. Design e-NDFSM for L ={w | w contains at least two 0’s or exactly

1.':?-;'

=~7. Design an e-NDFSM to accept strings of a’'s and b’s ending with ab or ba

-
-

-
"..-"

e .
~8. L ={w € {a, b}* : w = aba or |w| Is even}.

a,b

.

a,b

Do you start to feel the
power of Non-
Determinism?

45

d

9. L ={w e {a, b}* : the fourth to the last character is a}

oMo Mo Moo

46

DESM

M =(Q,X,8,q,,F) where
QQ is set of finite states

v is set of input alphabets
5:0xZto Q

q, 1stheinitial state

Fc Q issetof final states

NDFSM

definition of §. Here, § is defined as follows:
5:0x(XUe) tosubset of 20

2. There can be zero or one transition
from a state on an input symbol

There can be zero, one or more transitions
from a state on an input symbol

3, No e- transitions exist i.e., there
should not be any transition ora
transition if exist it should be onan

input symbol

e - transitions can exist i. e., without any input
there can be transition from one state to
another state.

4. Difficult to construct

Easy to construct

5. Less powerful but easy
to implement

More powerful than DFSM, but very difficult
to implement

47

*Converting an NDFSM to DFSM using subset Construction
Method

1) NDFSM - DFSM 2) €-NDFSM - DFSM

48

Example-1 (NDFSM to DFSM)

kT 5(1!@ U0,y =1 %ﬁ.f}

b U% lql_l

5 \9 .
> c o=
- o
-, 49
T‘D\ T _‘D\:SW\

Example-2 : All strings of a’s & b’s ending ab or ba

IRV : @f ol ey =) H(11) = 4
§ v o) (0 QublL @) = 12
,:,f_.;{? %(l,b)ubll/lb\: G2
22 SC)b [ty =125

4 \ SLu 04 o —at
T 51,4108, 044 =
/73\/ [S }'9 D("EMUE}Z?) — |

H}H‘/ U q\wzq\wbc@,m
[Sﬁlw\dd(Lm\)b Sy) = lLTZ) Y
6

e-NDFSM to DFSM

Computing e-Closure of State(eps)

eps(q
eps(q
eps(q
eps(q

O
N— " N
I I e

N

w

Example-1

(e-NDFSM to DFSM)

Example-2

52

2Solution:

53

4
Lo

Lo
Lo

Minimizing a DFSM

-The process of reducing a given DFSM to its minimal form is called as minimization of DFSM

-ADFSM M is minimal iff there is no other DFSM M’ such that L(M) = L(M’) and M’ has fewer
states than M does.

-Some states can be redundant

-There Exist a unique Minimal DFSM for ever Regular Language L.~

-Most methods involve finding equivalent states and merging them into single state.

Equivalence of two states:

Two states p and q of a DFSM are equivalent(Indistinguishable) iff:

o(p,w)eF and &(q,w)eEF or &(p,w)¢Fand &(q,w)é&F

for all stringsw € 2 * .

Otherwise states p and g are Distinguishable (i.e Distinct
P g vistinguisha ()

56

Method: Minimize DFSM using Partitioning(Spliting)

Procedure(High-Level Description)

=

Eliminate all the dead states and unreachable states from the given DFSM (if any)
Letk =0 T o i
Divide Q (set of states) into two sets such that one set contains all the non-final
states and other set contains all the final states. This Partition is called Tr

k = k+1. -

Find 1, by partitioning the different sets of 1, , . In each set of m,_; , consider all the
possible pair of states within each set and if the two states are distinguishable, split
the set into different sets in 1T,

Repeat step 4 and 5 until no change in partition occurs (i.e until T, # 1,)

All those states which belong to the same set are equivalent and Can be merged.

r

SEN

o b

~N o

57

Example-1

-
ﬁ. ~4
"‘-

1%
AV (ﬂ“/ﬁ,f iﬂ/) L(M/
/
G >0) e
[, a)— Uy, 9, % 1)y No SPIE vequyd
L 37_]6[) f——ﬁl EI,,IE],I CILICI,] J

1 I R R G R SR
6) — (9, °\|“|\ (ﬁlv)u)%(\"ljl‘{,”}‘i

(T8l 17,9, %) (=) Splitreyied
A 7 b = (T, 1, ‘\\ L4, b= L |
'8 6“1{] °) \43) LAy b)) — {414_)

1 = LC]LI Dlulcln 0\2\ 7-[/’ (ﬁ %I j Kc}jj‘) [CI \

) T N \ Ul
1 IR A RN A AR s ey v I G i

| I':\(()} 7 (12\:(2,\ t} (b1 (s

SE T (99,90 (00 (59) (5 *

= . (9,44 WMy g W)
@ A L, | 1

(2.0) Sz 5 by &) >(l%°?é\
L9 0y (1,550 (A3,L) = {240
Tty e (o e ﬂL\

- FORERES RN CIENCRATAD (5,015 Y (492 4,5
. — b o ——5}) r—t?qi\/\v

‘| BECEANSA wgﬂ\ «
m %j

3 ~ VA (%(1 w (CTLW mLh

'8 /l CU\Cﬁ’J_\ (1—,1@ (?%B

_

60

a

Home Work

Minimize the following DFSMs

a1 B
0 2

ellviialk:lln] (sleli it

QOO [XT(O»> QW

(9N
O

A Canonical form for FSM

A canonical form for some set of objects C assigns

exactly one representation to each class of “equivalent”
objects in C.

Further, each such representation is distinct, so two
objects in C share the same representation iff they are
“equivalent” in the sense for which we define the form.

63

Procedure: To build a Canonical form for FSM

buildFSMcanonicalform(M: FSM) =
1. M = ndfsmitodfsm(M).
2. M* = minDFSM(M").
3. Create a unigue assignment of names to the

states of M*.
4. Return M.

Given two FSMs M, and M,:
buildFSMcanonicalform(M,)
bquFSMcan;n.icaffﬂrm(ME]I

iff L(M,) = L(M.).

| It provides the basis for a simple way to test whether two FSMs are equivalent or
not...

64

65

(o}
O

Introduction to Transducers

67

——_—

traasgge_er?-;f"*

2d as a device that converts one form
iergy to another.

Xan ‘bies Motors, Speakers, Microphones,
-; , Light Bulbs, Potentiometer,

== uges
o Essentlally Sensors and Actuators

\ x

A=
apes, one for input and one for

‘:_‘?‘ >

. rts a lnput into an output.

- -

-~
— ——
—— -— T

—

= ,.,,,a_ nd Moore machines.

L m— e

e

—

o e ‘.‘. —
— —=-
— e — R
s | —

—

-
—_
—

“\

by Edward F. Moore (1925 -2003)
an output with each state of the

T
achine Formal Defini
IS a @-tuplemﬁ' €)7 C0) N Cly) IS S

ot of States

- ~é 1bols

out symbols
rtlon Function (QXzZ->Q)

tput Function (QXZ->0)
nitial /Start State

""1

:.q —

N

i\

10 seconds

f
_-f

=) seconds

- -

ly Machine Formal Definition ..

Is a 6-tuples®, denot G
where o

~ 7 l-\'."\'___. e — " \
0 D\ (C e Cle

t of States
= In symbols
;é;i'-« l]iiput symbols
;6-~Tran5|t|on Function
-e A\ = output function

* g, = Initial State / Start state

T
EXample =145 M/c for a binary input se :
ing 101, the machine outputs A. If i
the machine outputs B. Otherwise it outputs C.

D

— S e —
— s — il —

R -

p—

A

Xample-2 :
mpliment of that number as output .

D 10 IV D dnd ’. rms

=

e

-

'

QB R ORESIIEIRNE

Module-II

- Regular Expressions and Regular Grammars

J . \) BN \ NG N 3 A\ "
Byl A A - VB o B I R Y SESVANT v i f
y A% s _ h e W A kR M U VA
PR T _“,\&_“ s .
"N T A B

Regular Expressions
-Operators to build REs and their Precedence Levels
-Building Regular expression for RLs.
-Kleene’s theorem: Building an FSM from a RE
-Building RE from a FSM using Ripping method
-Applications of REs,
Regular Grammars
-Definition of a Regular Grammar, Examples
-Regular Grammars and Regular languages.
Properties of Regular Languages
-Regular Languages and Non-regular Languages
-Closure properties of RLs
-To show some languages are not RLs using Pumping Lemma

Regular Languages

Regular

oy O
—

E
B _Language
Regular Expressions

¥ 3

Finite State
Machine

Definition of Regular Expressions

The regular expressions over an alphabet ¥ are all and
only the strings that can be obtained as follows:

& 1s a regular expression, denoting L(©) = &
¢ IS a regular expression, denoting L(¢) = {¢ }
Every symbol a belongs to X is a regular expression.
If o, B are regular expressions, then so is af.
If o, B are regular expressions, then so is o/f.
If o IS a regular expression, then so is a*.

o0k owhE

= Operator Precedence in Regular Expressions

Precedence Operators
Highest Kleene star (*)

-) T - w L -
R PR o o 4 e el

concatenation (.)

Lowest union (|)

Regular Expression Examples

If ¥ ={a, b}, the following are regular expressions:

(aub)* or (alb)*
abba ue or abba|ce

- Examples: RE

1) a*b*

L1 3) (a oyrarp*

W& 1) (a|Db)*abba (alb)*

- Examples Contd...

:’:; Obtain a Regular Expression to accept all the strings of a’s & b’s of length < 2

e

® Obtain a RE to accept strings of a’'s & b’s with even number of a’s followed by add
% & number of b’'s

«‘.j_f Obtain a RE to accept all the strings of 0’s and 1’s ending with either 01 or 10

e

' ?z Obtain a RE to accept all the strings of a's and b’s having substring abb

Z B Build a RE to accept all strings of &', b’s & c’s containing atleast one a &
{| § atleaston b over ={a,b,c}

ff" Obtain a RE representing strings of a’'s and b’'s having odd length.
- RE:((a] b)(@| b))*(a| b)

“‘3 Obtain a RE to accept a Language consisting of strings of a’s and b’s
M & with alternate a’s and b’s

{} RE: (¢]b) (ab)* (|)

\ Build a RE to accept strings of 0’s & 1's having no two consecutive 0

RE: (1] 01)* (0| &)

4

L ={w e {a, b}*: |w| Is even}

RE ((a|b) (a|b))*

L ={w e {a, b}*: w contains an odd number of a’s}
RE: b* (ab*ab*)* a b*

YN L={w e {a, b}*: every a is immediately followed b}

RE: (b | ab)"

f_fObtain a RE to recognize all strings of a’s & b’s whose 3 symbol from the right is

RE:

@ Develop REfor L={a?"b>™|n=20,m=z=0}

RE:

fj" Obtain a RE to accept strings of a’'s & b’s containing no more then three a’'s
- RE: b*(e |a) b*(e |a)b*(e |a)b*
: % ObtainaREforL={a"™:n24, m<3}

RE: aaaaa*(e | b)3

|

i_‘,_; Obtain a RE to recognize strings of a’'s and b’s whose length is multiple of 3

or
L={w:|wjmod 3=0,w € {a,b}*}

| RE: (@lb)(alb)(alb))*

Ml M Nl -z]

E: Obtain a RE for L ={a"b™ | m+n is even }
& 33
oo ke YU W SO U [S0 e
L‘:'a ¥ * T
Rer G L)
; (ant 2. W, Y\ aie Oéd m’f“i—?”}m
L
R\: | Rﬁ_x Re, = (o) UO> Wﬂ&\)
% I Obtaina REforL={a™"|m=21,n21, mnz3}
‘:‘; - CcenT | - '\i‘ M o=\ \f\>/’{,} ‘Y\qrv\. N > ?J
Re, a bhbh v
;PV\W W\\/\v/ 17
fent 2]-\- 'V_'—\)m7/q7/ _ T
R\:l O\O\U\D\‘a Yo VV\(\Z’]J \/

Obtain a RE for the set of all strings that(do not end with 01, over {0,1}*

—— wfﬁ\‘\ ol

e —

LE- [O\I\ (oo \ia) 'l\ KW\D‘MS

i b Nk L\ df_[dr\q(\l@/\
v

& Regular expression to recognize variables, signed integer & signed real numbers

~ X
‘Q R Cm\\rg\ z\q\ b\ E;-)LA‘E,\ZS C\llol . z|o]\‘.‘ HB

24 <
& =)h-z,12, 0 ﬁ\w‘é% [a—zaz0-d) ieal
N — (@2 %y 'JLé&v
hE - (—\—I SQ\(oh\ ‘\l / K

(+\) (1) = T ﬂ/ T
RE ()] B Aaxo | et 10%6 - 1 Z0)
a(o|,,..;c,>é(b|,|. 1) / (c~(+|_,g\)(? F,\e \T 12030 |L5

If r,s and t are any arbitrary RE then: il — Lot d

Law Description

Ve
ris=s|r | is commutative st £t5
ri(s|t)=(r|s)|t - | is associative
r (st) = (rs)t Concatenation is associative
rs|t)=rs | rt; (s|t)r=sr [tr ~— Concatenation is distributive \%)
Er=rE=r — € is identity for concatenation V* — \L
rF=(r|€)* € is guaranteed in CIUE.EFE
r*=r— * is idempotent
< 3
(an]ey = laby el -) \ au\(c«m‘
Cale)e - ey (a1, QB \0% -
- _ 7 i
ESE s ~ U~ 5\(/

|4M__V\/\I| _

. Regular expressions in UNIX/Linux operating systems

. Regular Expressions in Pattern Matching(Search Engines)

. Reqgular Expressions in Software Engineering

. Regular expressions in Programming Languages(Perl,
Python etc).

Regular Expressions in Lexical Analysis(Compiler Design)

Kleene’s Theorem

Finite state machines and regular expressions define
the same class of languages. To prove this, we must
show:

Theorem:JAny language that can be defined with a
regular expression can be accepted by some FSM
and so is regular.

Theorem: Every regular language (i.e., every language
that can be accepted by some DFSM) can be
defined with a regular expression.

= For Every Regular Expression there
. is a Corresponding FSM

We'll show this by construction. An FSM for:

Regular expression FSM
% (0)=¢ 0 ©
:H'_m

c L@—I{ﬁl' \C) C @

\t a
foranyéez 1O

4

e

“dally’ e o i e L o et T -
A .':-.- 4 W'___. ot -‘..rril 4 £ "I'.."l:‘l-l' ‘l,‘

Proof Contd...

Regular expression

Z

= An Example
+ RE:ab

% An FSM for ab:

¥
e

;

e
"

a5 RE: (a|b) or L((a| b))

S
$

) N RE: a*

-} Design an NDFSM that accept the language L(aa*(a+b)) @

(a+b)

% Convert the regular expression (0 +1)*1(0 + 1) to NDFSM

L

T e T e A R STl R
. ey ol e T % e e I

£ Obtain an NDFSM that accept the Language: L(ab(a+b)*)

-
%
-

__ _.f._?_‘- -t:-'-__fﬁ. -.:t*.ﬁ ey .“.T- rog ;_" -
. oy F i S] i "y g -

—

Home Work o)
L -
Convert the following Re&s to NDFSM()-= ¢ @ @
gl) ar|b¥|cx a L] o @« &
{52) (a+b)*aa(arb)" i Al

3) L=(01(0 +01)*(0 +00)) —~ CZ)

_ @ow 007

S

Solution

W Lo
¥ fl‘l r.c '.:!“_' ‘. Ii'l

- For Every FSM There is a
~ Corresponding Regular Expression

We'll show this by construction(Ripping or State elimination)

- e v w
R FART =

The key idea is that we'll allow arbitrary regular expressions
= £ to label the transitions of an FSM.

\é; & 8—>)

A Simple Example

Let M be: S::ﬁ

—
-

Suppose we rip out state 2: # o,

The Algorithm \b—i%f@

. Remove unreachable states from M.
. If M has no accepting states then return Q. X
. If the start state of M is part of a loop, create a new start state(s)

and connect s to M’s start state via an g-transition.

. If there is more than one accepting state of M or there are any

transitions out of any of them, create a new accepting state and
connect each of M’s accepting states to it via an e-transition. The
old accepting states no longer accept.

. If M has only one state then return e.
. Until only the start state and the acceptlng state remain do:

6.1 Select rip (not start or an accepting state).

6.2 Remove rip from M.

6.3 *Modify the transitions among the remaining states so M
accepts the same strings.

. Return the regular expression(between start and final state)

Example-1

1. Create a new initial state and a new, unique accepting
state, neither of which is part of a loop.

2. Remove states and arcs and replace with arcs labelled
with larger and larger regular expressions.

An Example, Continued

Remove state 22:

An Example, Continued |, oljaast
Pie 2 oo

TS2 51 = C\(‘okc\lb)

~)

lal—»E—_ oG — o

Remove state _2_:

'___/Y-\/\
(ab U aaa*b)*(a | &)

. Example-2

-
-

Example-3 ‘ M Fun— RE

i 1407

. < Simplifying Regular Expressions
X > QJ
Regex’s describe sets: y \ B<—k (0

e Union is commutative: a |B=f |« Y)
e Union is associative: (o | B) [y=a | (B |v). DQDK i D‘i

B 22 e Jis the identity for union: o | @ =2 | o=«
&7 e Union is idempotent: a | a = o.

-~

N W Concatenation:

e Concatenation is associative: (aB)y a(By)
e ¢ is the identity for concatenation: a & =¢ a = a.
e Jis a zero for concatenation: o ¥ =9 o =G,

SRV
% Concatenation distributes over union: b \
o XD EICRNIGE! . - (alb)
sr@IBEGAlIG O oL
" B Kleene star: ==
& o J* =g, E‘-tig. cc - e‘
e c*F=g¢. _
o(a*)* = o
® o*o* = oF

o(a | B)* = (a*B*)*.

. : + AT
IS AN V\'.w\v,OR : R Z
& ——76\)+_I"Y' L=

- Regular and Nonregular Languages
NS o e s vk L

%Q I L~ > ‘\If
N L . s N
E -Showing that a Language is Regular N ELon

\/ /’;; P‘“\[‘L,x, K

8 o) -
o @ -Closure Properties of Regular Languages

"':" -Showing that a Language is Not Regular(pump{nq Lemma)
RN
B J Y YE M
o =S B | J N M
. T N U
§ "R L= =

—" L D= mfrefa,” (=4

standard
representations

of regular

languages

/.
regular expressions

regular languages

regular grammars

What is a WQG7 ﬁ&
L \Y éQ’“\\J\}w
G e, Le\RSrmasen

A EPANSERE

Theorem: Every finite language 15 @u—lmj

J J
Proof: Tt L 15 the empty set, then it 15 defined by the regular expression and so 15 regular. If it 15 any fimite language
composed of the strings 51, 5. ... 5, for some postirve mteger , then 1t 15 defined by the regular expression:

nUsY .. US BN Q—vn\-‘*z\‘ ~ s

S0 1t t00 15 regular.

< Closure Properties of Regular Languages

* 1. If Land M are regular Languages , sois L U M T L\af/w\
& v T - uth

® . 2. IfLand M are regular Languages, LM is also regular =N

. % . . . \

| 5 3. IfLisregular, sois L* (Kine:star) SEL\/MV\
.. N B S ___—\7 U\‘IU\L, \Y

4. If L is regular, so is complement of L A L) NS c \
~ L—!’\)(—.l

5. IfL and M are regular languages , L N M is also regular

6. If Land M are regular languages , L- M is also regular

~ O =
7. If Lis regular, then LR is also regular(Reversal)

8. if Lis regular, so is h(L) < Homomorphism or letter substitution>

/

v/ S - —

- <If L, and L, are regular , then L,U L,, L,.L, and L* also denote
the regular Language. U &, fom—

-; Proof. Itis given that L1 and L2 are regular Languages. So, there exist regular
.- expressions a and B such that

%LlZL(a) | > RE
L2:LQB)

3 By the definition of Regular expressions, we have- \/ -

:-:,-._-' $:. *a | B Is aregular expression denoting the language L1 U L2

A Ve R
W & - a.p is aregular expression denoting the language L1.L2

PEE—————

5 & ° 0* is a regular expression denoting the language L1 VAL L

" @ so, the regular language are closed under Union, Concatenation and star
closure
: L o OIS
MQ | 45{\'51’ \ \—]\J\—Lty S, oL

[} qk 1 , L—li{q',qla\g- ’ .

5| ?] S L T ? I = \r

. If Lis aregular Language , then complement of L Is also

T:=¢-
regular SELR = e

O Prove that RLs are closed under complementation.

O If L is aregular language overZ thenL) 34 Lns
regular language.

O Proof: a4

a If Lis regular, there exists a BFA M
recognizing L.™

a We can construct a DFA M’ for L by copying
M to M’ except that all final states in M are
changed to non-final, and all non-final states to

final.

O See next slide for a formal proof
VA

_L—,\wé{o\,‘wf‘;\w donet ch)

: b
R LR A }

O-F = o) 1} —%l?:HO,'ﬁ

. —
s
DEGM e

Let M ,-(Q 2, d, gy, F) a DFA that accepts L(M,)

Let M,=(Q. Z, 8, G, Q-F) a DFA that accepts L(Mz)

Obviously both languages are regular languages

Per definition 2.2: L(M) = {w €2." : 8(gy. w) € F}

The following are both true —
O we) :0(g,w)eF — =0(qy,we Q-F
Owe) :0(g,w)eQ-F- =08(qy,w)&F.

Thus L(M,) = L(M,)

L(M,) is an arbitrary regular language and-its
complement is also a regular language, therefore the
regular languages are closed under complementanon

B b\\aJ“‘]ﬂli‘VW\h

\A)(-—}"‘\’J | H‘G’Y\J\uh«m\fl\

If L1 and L2 are regular Languages, thenso,isL1 N L2.

L= gr_«c\la l@b)a'_—m\a L‘ _,L_T—-ILQ\GLL.BLA. [:,"\19‘(,\,\(._ . \
BTAR (VIS U okl okl)

O Are regular languages closed under intersection?
2 O IfL,and L, are RLs, then L, N L, is RL.

: “porieo”
O Proof: - ¥
Q Since RLs are closed under union and >

complcmentatlon they are also closed under
intersection “ QL

a L,, L,are RLs, so L,, L, are RLs, and L, ufz

is RL, so L, U L, is RL. LML*(\

— | WL
Q ThusL,WL,=L;NnL, isRL., -
LAl s oao B L

SR et [1Y -*Q'.hn'
o & ¢ o P g

i, AP

LT TS S e

If L1 and L2 are regular Languages, then so, isL1-L2.

Are regular languages closed under difference?

g) IfLl and L, are RLs,1s L, - L, RL? Why?

G Liy~ibs =¥ 5B

a Since RLs are closed under intersection and
complementation, they are also closed under
difference.

. If Lis regular, then LR is also regular(Reversal)

. Proof: We know that L is regular. Let a be a regular expression describing L(a). It
+ is required to prove that there is another regular expression ER such that:

L(a) = (L(a))R

5 & By definition of regular expression, we have:

Regular Expression (Regular Expression)R
£ {e}R =¢ 2> L ={g}
0 [B}R =9 SL={}0re
a (Any i/p symbol) {a}lR =a 2L ={a}
ol B (a| B)F =aR | BR 2> L(a®)UL(RR)
o.f (a.B)R =BR.aRr > LBR).L(aR)
o* (G*)R — (GR)* 9 L(GR)

From above, its clear that LR is also regular when L is regular.

- |f L Is regular , so is h(L)

What IS homomorphism?

"Let 2 and ¢ are set of alphabets.
The homomorphic function h: 2 - ¢* is called
homomorphlsm (I1.e single letter is replaced by a string)

& Sif w=a,a,a,....anthen h(w) = h(a,)h(a,)h(a,)....
ZBf L={w|weL},thenh(L)= {h(w)|weL}
’ Example:

[1L ={00, 010} what is h(L)?

% h(010) = h(0)h(1)h(0) = abbab
& h(L) = h({00,010}) = { h(00), h(010) } = { h(0)h(0) , h(0)h(1)h(0)} = { abab, abbab}

P

-

" Proof(using Regular Expression):
. Let a be the regular expression and L(a) be the
- corresponding regular Language.

: :3 We can easily find h(a) by substituting h(a) for each a in 2.
By definition of Regqgular expression, h(a) is a regular
-;- expression and h(L) is regular language. So, the regular
language is closed under homomorphism.

Example: 2={a,b},¢={0,1) and h(a) =00, h(b) = 10

Suppose a = (al|b)* ab, describe the L = {w € {a,b}* | w ends with ab}
h(a) = h((alb)*ab) = h((alb)*) h(ab) = (h(a)|h(b))*h(a)h(b)

= (00|10)* 0010 - describe the Language h(L)

A
4
i -
.
a i
=5 1]
".H-“
L
Iu-|.
[

&

Proving Languages Not to Be
Regular

N A
~ fl . T i v o T A -
PR PRI oo 2 e e P

Some languages are not regular

When is a language Is regular?

If we are able to construct one of the following:
DFSM or NDFSM or RE or RG

When is it not regular?

If we can show that no FSM can be built for a
Language.

14

How to prove languages are not
regular?

What if we cannot come up with any FSM?
A) Can it be language that is not regular?
B) Orisitthat we tried wrong approaches?

How do we decisively prove that a language Is
not regular?

Pigeon Hole Principle

CUNCNE N

N
ENONR
AN

x*xw*

4
L

Pumping Lemma for Regular Languages

_"jf Statement:

.\ LetLbea regular language. Then there exists a constant n (which depends on
- L) such that for every string w in L such that |x| 2 n , we can break w into three

strings x = uvw such that:

e
N
. B

e

B IRRRI

‘
< 1. v#e

{2 Juvsn

& 3. Forallk =0, the string u(v)<w is also in L.

Pumping Lemma: Proof

» L is regular => it should have a DFSM.
— Set n := Number of states in the DFSM

* Any string xeL, such that |x| 2 n, should have the form: x=a,a,...a,,
where m2n

» => We should be able to break x = uvw as follows:
> U= a,a,..8, V=23a,,8,,..85 W= a;,185,,..8,
» u’s path will be p,...p;
» V's path will be p, p.,;..p; (but p=p, implying a loop)

R » w's path will be p;p;.1--Pry J— VK. fOF-KAQOPS) .
& > Now consider another T
1 string x,=u(v)*w , where k=0 —’@UW
{ > Case:k=0 — P
- > DFSM will reach the accept state p,,
§ > Case:k>0

» DFSM will loop for v&, and finally reach the accept state p,, for w

¥ > Ineither case, xe L (This proves the lemma)

Applications of the Pumping Lemma

The pumping lemma is a very powerful tool and

§ 2 has the following applications’;

1.1t Is used to prove that certain Languages
= are non-reqgular.

' 2. It can be used to check whether a
8 language accepted by FSM is finite or
Infinite

' ‘h

ff" The General Strategy used to prove that Language is Not Regular

5 J
. Step 1: Assume that the Language L is regular.

o
4 Step 2: Select the string x such that x| 2 n and break it into 3 substrings

%: u,v and w so that X = uvw with the constraints: v # € & |uv| = n.
| W= 7

=2Q

: Step 3: Find any k 'such that u(v)w & L.

3 ; (According to pumping lemma, uvkw is in L for any k = 0. so the result is contradiction to
s our assumption. Hence given L is not regular)

"

D
O
-
(©
X
LL]

L g

T »
PR CENE I

-~ Showthat L={a"b"|nz20}is notaregular
] L/—’_

WY
kst Ak LS R juv | 41

stoi | Heak W\ € —=
W Q_ S_\/\[. |
;{\ S()\PC‘L 1 U \6

Lieyea b LL =2

JT (M \.’J\(qu (\——i-o”b\l\) E /

. h
qq....lf\ L. | ~ -
e (=) s A

£
"\"QQ%&_ v

Iy a =z
Jlf‘{\”\ AR
35 ('_L\UO‘G K_‘é Ve s\J\}C Ny
V\-'{'(,\;(Lﬂ: G\ \g %L

W Vv W

Provethat L={ab!|i>]}is notaregular.

v
Step 1. Assume that L is regular and n is some constant integer.

Y>>

= .) i
Step 2: Select x = a™!b", since |x| = 2n+1 2 n, we can split x into uvw
such that [uv| < nand v # € as shown below.
x=a"p" =a"ab" =a"! a ab", whereu=a",v=a,w=ab"

W v W
><_
Step 3: According to pumping lemma, a™! (a)k ab" e L forany k 20
A \a)” ab K

if we choose k=0,
<

The resulting string becomes: ant abn = a"b" & L.

Therefore, L is not regular.

—_—

v) Vit 7L_V—k
=~ Showthat L={a"b'|n#1}is not regular.
USSR U

::“ Vo a — - QA

5 ..

5 3 .

2 -Proof is same as previous Language...

“: — NI aboulbh
? 3 > (et lal

. Show that L ={w | n,(w)<ny(w)}is notregular.) < \val

NAG
v ot e, annan

A4S
w\
c\(\‘\ e M 1

4 ; Ta= \DULE'_(_)J
< Provethat L={wwR|w €{0,1}* } is notaregular. o o

1. Assume that L is regular and n is some integer constant.

L— (O]
N =N

2. Consider the string x = 1"0"0"1" , since |X| = 4n 2 n, we can split X
Into uvw such that uv] < n and v # € as shown below:

x:lrj ,1,(32911,“1 where u = 11 ,vzl_andw:O”O'“ln

———

A v L %
3. According to pumping lemma, 1™ (1)k0"0"1" e L fork =0,
if we can choose k=0, then e

the resulting string become: 1™10"0"1" & L.

Therefore, L is not regular

110060060), &=\

/’___M—

?_:{”‘\T QV — \ TG 1y
Showthat L={a™ | n2 0} is not a regular.

1. Assume that L is regular and n is integer constant

e\

2. Consider the string x =a™ , since |x| = n! 2 n, we can split x

Into uvw such that uv] < n and v # € as shown below:

le.x=a a am™, whereu=a,v=a andw =an"

A N~ A)

w v)
3. According to pumping lemma, a' (a/)<a™e L fork=0 we
~
If we choose k=0, it means that : <fnp)
N T w1 > - T
a (a)kani =alamHi=ag™ el 11 s[3tA)E 4!

Itis clear that: n! > (n!-]) < (n+1)! [take j=1] L:/@iiif

=2>implies that a™?! & L

Therefore, L is not regular.f

ADMIN
Highlight

Ve SN AGQ GO U RAAAOG | —
7~

“Show that the language L = {a | pis aprime number} is not regular. >*
;._, 7_35"7 \\’I"5

* 1. Assume that L is regular and n IS some integer constant

PAA

2. Select string x = a" e L where n is prime. Since [x| = n’, so we can
break x into x=uvw such that |v| # € and |uv| < n as shown below.
x=am=aaa el
Wy o /

where [u] =i, |[v|]=j21and |uv| =i+ <n

3. According to Pumping lemma, u(v)kw e L for k =0,1,2....

i.e. a (@)a"™elL A+ JWM
i.e. {+jk+n-i-j = n+j(k-1) is prime for all k = 0 W+ =y L)
Now, if we choose k = n+1, then -
N N \) A—\\ é; |_,,
n+jk-1) = n+Jn = n(J+1) must be a prime. &

which is a contradiction(because prime number can not be factored)
so, n(j+1) is not a prime.

Therefore, L is not Regular,/

L CA\Q\)QV\\O N
R ww\HomeWork V(=) =

A = LW T ST E

l\,

1 Show that L ={w € {0, 1}* : the number of Os in w equals the number of 1s in w}
is not a regular using pumping Lemma—" N
o 0\0L
4 n N "
3 32 Prove that L = {ww : w € { 0, 1} }is not a regular Language. ¢"\" "
?z o\’ \)_‘\ o Ei’}i& C.___
:“f 3. Show that L ={0™1": m >n 20} is not a regular. “_‘Ql/m li:ﬂ
1 S \ Lo
. { >0 TN

& similarto: L={a'b [i>]}is notregular (ref. : slide No. 23)

S PRy

Regular Grammars

(also called right-Linear Grammars)

2 W ECUR T N

(_.‘/|

© Definition: Aregular grammar G is a 4-tuples S 90%
3. G=(V,TPS), where -
&
|~ V: Set of Not-terminal symboIsAaIso called Variables. WT
i Ve 3 LJ\LJ//
“, T Setof Terminal symbols (= ToL s

NT —
where a € T is terminal symbol and A,B € V, are
variables

{P: Set of productions or rules of the form

\/'
S: The start symbol (Non-terminal)

T i AT S T LN T
- Fg R = 1 B
S = i ke - e -
. - it A - i
s - ' LA b ’ gl
. i ¥ w __.-_l;_;;' I.-'r- -=-'_ ‘_"_) ,('l"'l'.

* Regular grammar G describes a reqular Language denoted by @

L Lo
* S Py

Simple Example: Regular Grammar to accept all string with any number of a’s

/_—> A0G 6= daa
((,\c &y))

& Examples contd..

‘,‘:‘ 1.0Obtain a Regular grammar to generate all strings of :}’s and b’s including empty

string. -~ vl vz & b 6o
¢ 2, a5 |kYle
B >bS ~ T T —>abutl
ﬁ S¢ Therefore G = ({S}, {a.b}, P.S)
; T I e
__ 2. Obtain a Regular Grammar to accept all strings of 0's and 1’s ending 01

y (ol Jor (o])13
S — Shs|ea™ —=

F'. Q SRR V EL
A —> |
- —7IS‘>IDS_7fQCJ—> DIBPCL
\

G=(15ah

3. Design a Regular grammar L={we€{a, b}y : |w/iseven} [— \V\\\w\(

G N fam)

S—>aTl|bT]|¢

VAN a,b
T—>aS|bS Generate w = ababbb . ~
— |
— = \,:, C\\/,JU\T ", c\
SESEECEE AL\t
— A L O\Eg —
—a bbb
— abahh By 2 w AN
Gy
4. Obtain a Regular grammar to accept*all strings of a’s and b’s that begin
& with a and end with b. Re. 2@k
.
N,
g = O A .,

Pr ST eahls

—~€ Ak
f_f' 5.LetL={w € {a, b} : w ends with the pattern aaaa} N—= s A AN
ol
X
s Regular Grammar for L: (2l SadH
S—=al /* An arbitrary number of 2’5 and I»'s can be generated before the
S—>bS pattern starts. A —
S—aB /* Generate the first 2 of the pattern. =
B—aC — [*Generate the second z of the pattern. K_\—‘L\
C—=aD v /* Generate the third a of the pattern. / |
D—oa_ /* Generate the last a of the pattern and quat. %, =150

M)
% Finite State Machine - Regular Grammars 4U)

3 J
. For every FSM M , there exists a Regular Grammar G,ﬁlch that L(M) =L(G)

[
1. Assume that M DFSM (if not convert it to DESM) \@)

Construct G = (V,T,P,S) from M as follows: g
¢ 2. Create a Nonterminal for each state in the M.

B TERR

3. The start state of M becomes the starting Nonterminal for G
o § — o T Y
4. For each transition 6(A, a) = B, add a production A>aB to G

5. For each accepting state A, add a production A2 £€to G

@ﬁf\
5(4\14\ 4

k/’
C=L c—pu

e Y\k_\]

S Examples d T
‘ 1. L={w € {a, b}* : w contains an even numT)/er of a’s and an@ number of b’s}.
(7).
ON ©) T
a0
Ll L \S ﬁox”l’)\aﬂébéu%hh}“
« Jc BXV T ook
@ N s =
S s &)Lﬂ P:" < @ @
A — q%)bC
LS e S~ &
3 > 0e|°C o
C — bAld \
v C\(\M | >
Q'. (&S)Qf |DJ) /)

N N
~ 2.L={w e {a, b}*: wdoes not end in aa}.

/Il\ =\
. w

L"_ A—«—v V_\lebg‘é

Regular Grammars - FSM ¥

For every Regular Grammar G , there exists a FSM M, such tha\t/ L(G) = L(M)
— - > A BN

1.Convert the Following RG to FSM
S—aTl .
T—bT —

T—a ﬁ @———G\/‘)@

f 2.Convert the Following RG to FSM

u S — aSsS

_: S - bS D Fg W\

83 S—aBv iy =
B—>aCJ /

C—ab v« O\/b /

D—a

o = @L>©_—°i—+>@

Module-3

o, S

Topic: Context-Free Grammars

i ':."_"-" ?f'rfﬁ_ €F o= ; {

Content

-Introduction to Grammars, CFGs and languages
-Designing CFGs, simplifying CFGs

-Derivation and Parse trees

-Ambiguity, Examples

-Techniques for reducing ambiguity from Grammars
- Normal Forms(CNF, GNF)

Lmjl}\“f\(l

Z RE+-CTW (/= empiidl D056 e
N =

Introductlon to CFG: Informal Comments
- U A context-free grammar is a notation for describing j; ur

languages. SjV\H\)(ASITATF TS SR L) T nti 1)

| % IERLT [\\EIW\Q
=
f
“i

.i U Itis more powerful than finite automata or RE’s, but still 7,
_ !

cannot define all possible languages. _
¥ & ()
= 8 Useful for nested structures, e.g., parentheses in - -
@ @ programming languages. .7

2 B (Basic idea Is to use “variables” to stand for sets of strings

$ B (i.e., languages) = 5 T

f LU These variables are defined recursively, in terms of one

. 8 another.

c_. o 6l QG

Definition of Context-Free Grammars

A context-free grammar (CFG) G, Is defined by a 4-tuples as:

G = (V,T,P,S) (V%2)5 56\
Z [/ =I Ay
Where, =1 b‘
. . \f . . -
V: is the flnal set of a Non-terminal(Variables) symbols.
T: is the fmal set of a terminal symbols(i\ < hendd > <l‘&‘m
P: is a set of production/fules of the A > o o —7 = 1
where A is single Nonterminal symbol and a isastring &~ — @
of Zero or more Terminals & Nonterminal symbols = ey

S: Is the start symbol which is used to derive/generate the string
~pelongs to the Language and represents the Language being

defined. » y
B Zeoeey £ wdgred

https://en.wikipedia.org/wiki/Nonterminal

T=5 o \

L
& Example: A Context-Free Grammar for Palindromes _,_

WM@GC\

? S—->0S0

= S—>1S1 (A4
S->0~
S->1 _

— " M
\

L = T _'_’,A:l—))’r

i‘f -\JUtdt]UIl f[JI' CFG ;Illll---ﬁé"r, (‘,)\ ;} [\IerL, ,;)’TPYM(M\

.3 1. Lower-case letters Leay the beginning of the alphabet, a, b, and so A_
on, are terminal symbols. We shall also assume that digits and other

AL
characters such as + or parentheses are terminals. A %}d

ATENLIE (

o ~
2. Upper-case letters near the beginning of the alphabet, A, B, and so

o, are variablesC N 7T

3. Lower-case letters near the end of the alphabet, such as w or z, are = fo)
strines of terminals. This convention reminds us that the terminals T
— . 2 _—- G
are analogous to the input symbols of an automaton. —
w= ((01))
1. Upper-case letters near the end of the alphabet, such as X or Y, are
cither terminals or variables. 7<
— Y /
5. Lower-case Greek letters, such as o and 3, are strings consisting of . ¥
s N _ lo -
; terminals and/or variables.(~1 T - SLE H{JMM K =4
* 1 (9w \a) — g
| 6. gthe productions A — a1, A — aq, ... _1/?}/5]# Catl - A=
I §—> oSoL | H[c P‘
< 515 o1 begeplaced By-the notation 4 — ayjay| ---;n.“.(/lr—) .0
Sl e -
S L o o> G 0SS fi e (5= P guc o X %, X
S5 I N il W ’; 2) 6

= The Language of a Grammar

s WG = (VP S) is a CEFG, the language of) denoted L(G), is the set of
terminal strings that have derivations from the start symbol. That is,

> LG)=4wind"| S= w}
i {.r'
N

B

2 I a laneuaee Lois the laneuace of some context-free erammar. then £Lois said to
; ‘i'_-_!l .,t_._:' L] . = o] E

|

e o W
1tk F |

he a context-free language, or CEFL.
For Instance, Consider the set of rules or productions below:

S->0S0
S->1S1
S->0
S->1
S—>¢

Above grammar, defined the Language of Palindromes over alphabet {0,1}. Thus, the set of
palindromes is a CFL.

< Designing of CFG: Problems

Design the Context free grammar for the Language L={0"1"|n=>0}
* Design the Context free grammar for the Language L = { we { (,)}* : the parentheses are

8 balanced }

P =

S>(S)|SS ¢

Derivation and Parse trees

Derivation:
= Aprocess of obtaining string of terminals and/or Non-Terminals from the start symbol by
. :3 applying some or productions is called derivation.

4 q.g EX.

A parse tree of a derivation is a tree in which:

« Each internal node is labeled with a nonterminal
‘Ifarule A-> A A,...A, occurs in the derivation then Ais a

parent node of nodes labeled A;, A, ..., A,

Leftmost, Rightmost Derivations

oS P

Deflnltlon A left-most derivation(LMD) of a sentential form is one in which
4 rules transforming the left-most Nonterminal are always applied.

uF'

5

S 5A|AB

A >eglalAb|AA In LMD, always pick up leftmost Nonterminal
B >b|bc|Bc|bB —
o ettt NCE }JJ[VM

! \
S=AB=AAB= aAB — aaB = aabB = aabb (using LMD)

N5 S

& g U\j\(‘/\ \W\c}\
= Definition. A rlght most derlvatlon(RI\/ID) of a sentential form is one In

& which rules transforming the right-most Nonterminal are always applied.

{

S = AB = AbB = Abb = AAbb = Aabb = aabb | [N RMD, always pick up

\/A/ ~.| Rightmost Nonterminal
-
[e 5 vli)

N

Parse Trees(Example)
=S ke 13 | emp\

S 5>A|AB
A >clalAb|AA
B >b|bc|Bc|bB

S = AB = AAB = aAB > aaB = aabB = aabb —

Parse tree

% Consider the grammar G with Productions. SU=NE0) & L

L A3 R N aar

A-> §A| £ |
L
B> i? |bB € Optain LMD, RMD and Parse tree for the string aaabab

—oUALET
:>54“ALE =~
—>aaokh A= &W

— aa< bz’ [B gﬁl@r
’_‘>40\Q\MLB'L k

—aalsal JB—t]
~ L

=~De3|gn|ng of CFG: Problems contd...

{Bt% 2 VAL M

“Obtaln a grammar for L={0™1"2" |m 20,n 20} and also give LMD , RMD and
,.Parse tree for the string w = 0011222 ~/,> | W) LT a2
FRVASRAY -
S—=>A ‘3 A
n —» OD@\D[5__> P\

—~oiz BL

7 e A= N4 L‘/?Ck q?b) O\h\D\a\s’/ KGGG L, - k
= Design a grammar for L = {a™b":n=0)} I

\) 5 WA
o L= haw's - n 20 UL
[B N DT,

L-\gob \\\/ 7
4
S
l

. w € {a,b}*and wherew" is areverse of w }
— LJR A \A,H'T \
s GxaGRb c.C=C

o

g
-
afe

e 3
-

i

4

k

L

Y
o

i

L

™

Desigh a CFG for the Language L={a'b |i#j,i,j=0}

J

L= E(R'Llj k “>j/ Lj%"T

02 -
;_{@'Ll) <)1)
c = qg,g\Aé
A s oAl

- Q%LM%}
2 — LBIL /.

| >J o \<J

—_—

\/(3 vl —
% Design a CFG for the Language L={a"b™® | n=3) C’iL—: __aua%c,_ U

Q/ T Jr () Cf%'f@u\a

f L= L vizo
- \ﬁgﬂ_ﬁb\/\\\nzvj

\/ -

C o\%‘qc@ s N

fj‘ For the regular expression (011 + 1)* (01)* obtain the Context — Free Grammar
. v — _’_’J

2 QS c tG J
[|l ,
L R R&&FL

G
Obtain a CFG to generate set of all strings with exactly one a over { a,b}

=
L=

> Sebsla? > eme T
s B> bB|¢ < N A
Lol

A F\:é\(’__
: 2ty s AT
/1

Design a grammar for the Language L ={w | n_(w)=n,(w) } N =) ﬂ

—_— .| ‘e

% Ng
i S—>aSh|bSa|SS|¢ Here S - SS take care of strings that starts and ends with same
R symbol (& o [a\

IQ& anng\ U\\av\lqé_

—
—
e

hh &
S=abbalb L D gawibia ay - %
My [V 3 / \J

I'N\D\ \2(\/\5)) Plf

\'q'ol‘:’\—_")

<X

‘f_f Design a grammar for the Language L ={w | n (w) >n,(w)} - Home Work é
~
4 S — JL\E—,f SA\P\SA
3@ _> §—>“\55]IﬂSKJSSJE
A = o 10
;r.AﬁbNm
$
Design a CFG to generate the Language L={a"b™ : n20,m>n} \/\/_,ul ™ 22, \
WL we Wy
- fa -

K= QGK Lﬂc\g_]c S flzgﬂi = La

La=— L'\ﬂ\g_g\, = caa s bbb

- AGn (S bl L
S = B @Llr%sﬁt = aaZLLhL

= Soarcbbbil CL

L=

% Design a CFG for the Language L={a"b™ck | n+2m=k & nm=0}

e LK
|“[q|\n/ \‘l qcm%laé_x

G
;T W \K E[lgloCCEQC L
o Fﬁlcﬁ
AW VN
\\ I 5/ \K [g__l"i'rle f'_%/l

\/ . L), C tCC (iL

LA cc
-~
A A LU B (e

Q}f\j_ N bl cecd 75/'—/

galbheeccct &
- G\[AL\:,(_CL@ &L

LAl ©

Ambiguity

Amblguous Grammars

-A CFG is ambiguous if it generate more than one parse tree for

some (or all) strings. When this happens ,we sﬁy_ﬂﬁﬁmmmar
IS ambiguous.

-More precisely, a grammar G is ambiguous iff there is at least one
string in L(G) for which G produce more than one parse tree
(Obtained by applying either LMD or RMD).

It Is easy to write ambiguous grammars, if we are not careful. But S

such Grammars undesirable for many applications. £ r j®
O | |\ 1 [

)

B \Why care?

-Ambiguity can be a problem in things like programming
languages where we want agreement between the programmer
and compiler over what happens

» Examples-1

L=

. 'b.

Is the following grammar ambiguous? VQC,
”\:ﬁl@) I\ =
S2>AS | ¢)
A>A1|0A1|01 -{S)L\\
Take a string w = 00111
S=>AS = AlS = 0AllS = 00111S = 0011l = ----- (LMD)
S = AS = 0A1S = 0A1l1S = 00111S = 00111e ----- (LMD)
/% S
A RN
no A S
A
I\ S S
>, \ o ‘A_/\
A | .
b | IDT o/\\ Y (_ﬁ\

Example-2: The Balanced Parentheses Grammar is Ambiguous

L={we€ {), (}*:the parentheses are balanced} is ambiguous.

G: S—(S) : : : :
S_, SS Since there exist two parse trees, Hence G Is ambiguous
S—€

Take w = (0)0 €|

S S
el — T s/\s (//:c;l\)
(S) (S) | TN |
I | e (~T) £
(S) £
| {i)
£ Qt(()}[\ . w:(())(}

In fact, G can produce an infinite number of parse trees for the string (())().

%~ Example-3: Expression Grammar T—_g R PR }/ [GL%

5 @ g
b a ~ = NN
" E>E+E|E-E|E*E|E/E|(E)|id| isambiguous? &+
Ve @D o o
S letwid+id*id el Y
f _ oL Fo S
“ N 1: l:, [P) |
AN SN /I
L E
-+ T 7~ E_ % E T
I ANEEEG . o
v — “@L [pevir |
T id T_ * = T T T ‘ (f oo)
| ,
d d A P p(m\,jj’\i\—o\/\)

Home work

 Show that following Grammars are ambiguous:
@ S-> aB | bA -
A-> aS | bAA | a

o B->bS|aBB | Db s { take w = aabbab }
i & 2./S>ICtS|iCtSeS | a

s lco>b {w = ibtibtaea }
% & 3./S>AB|aaB
G @ A > a|Aa

B->Db {w=aab}

" _ ' S > aSbS|bSaS|t¢ {w =aababb}

1. S=> aB | bA

A-> aS |bAA|a ~—
B>bS |aBB | b { take w = aabbab } Va
o
y S =aB {S—> aB }
S=aB {S>aB" } =>aaBB\/ {B%aBBJ}
= aaBB { B>aBB } — aabB .~ {B>b }
= aabSB {B>bS" } —aabbS™/ {E»bs }
:aaEEﬁB {{ S : bA i —aabbaB—~ {S>aB }
— aabbaB A—> a
B I AR } —aabbab L. {B>b }
LMD-1
>,
/q S p
A \% AN
N RN
VAN
N /B % L L Q
\
New N\
N B
Lk

LII'I?-;"' O’ .

=~ 4. 5>aSbS|bSaS|e {w=aababb }

S >asbS|bSas aababl \/\

a < b
4 S = aShS {S=> aSbS }
. = aasbSbs {S> asbs } /‘\ 3
;- :-3 = aabSaSbhSbs {S bSaS} LD |
= ; = aabaShShbS { S2>¢ O S | % -
B = aababSbS {S>¢ }
- —aababb$s {S>¢ } / ‘ \
= aababb C—MG\) {S>¢ } 5 A S <
\
Q <
S = aSbs {S> aSbS }
= aashSbs {S>asbs } PT-21 <
= aabShS {S>¢ y WAL s
= aabaSbSbS { S—>aSbS } T (
= aababSbS {SD>¢ } S \4
=>aababb$S {S> ¢ }
= aababb E‘[L@ﬂ {S>¢ } q/i\\q\g \&
L AN
E < SL G
oy, oA |]
= -

N

Inherent Ambiguous Language

-In many cases, when confronted with an ambiguous grammar G, it
IS possible to construct a new grammar G that generates L(G) and
that has less (or no) ambiguity. Unfortunately, it is not always
possible to do this. There exist context-free languages for which no
unambiguous grammar exists. We call such languages inherently
ambiguous. 7

= L= {a"v"c™| n,m 20} u{a"™c™ | n, m2 0} is inherently ambiguous Language

Ny /_J\
G:S— S1|S2
S1— S1c|A
A— aAb | € __7 m\”“‘\
S2—-aS2|B

B —DbBc|¢€

-

=

-No Algorithms available to test for ambiguity in a grammars.

Techniques for Reducing Ar_nbigyity

- No Algorithms or methods exist to remove Ambiguity from grammars

-But there do exist heuristics that we can use to find some of the more common
source of ambiguity and remove them. 2

—

Technigues (heuristics)
& ¥ A= 1C
(1. Elimination of &-productions from G

2

4
3) Elimination of productions like S=>SS or E 2 E + E in G (Symmetric and body

> Elimination of Unit productions from G

contains atleast two copies of the NTs)

+

4. Elimination of useless symbols/Productions from G.
v

Q

. Definition: Let G = (V,T,P,S) be a CFG . A Production in P of the form A->

j-o e Is called e-Production or NULL production, Ve

: l

©3 Ex. S>ABCa|bD T= 2% 0,d Y 57 (J\ = C\H L_J
CT Aezi?!b \(_{%/V&I RJLP\(

Co>cle

D-> d

In this grammar, the productions:
B->¢

C—>c¢
are g-Productions.

—

NT/

To eliminate e-Productions, we have to compute all Nullable variables in the grammar

Z

= S ABCa|bD

3 '"A>BC|b
B->b|¢
dC%c|a
D->d

>

;:_-;_Eliminate all e-Productions from the grammar:

' S BAAB
. A>0A2]|2A0] ¢
.. B> AB|1B|¢

N :‘{A/&SE

AL AAB BABIRAR MDA A 10 |

J

o

——

Definition: Let G = (V,T,P,S) be a CFG . A Production in P of the form
- A-> B is called unit Production. The Presence of Unit productions in G

.- can be source of ambiguity.

Ex.: Consider the Grammar

B>V
Here: A > B and A= C are Unit Production; B—>aB and B - b are
non-Unit productions.

vty J)T ‘_-)‘fY\AP]A Ij T\/”Ul’l/l

L
= Example:

Eliminate all Unit productions from the grammatr:

- S>AB i R @_,_@,_9@

v A>a *
: %:% s>cp Vo
S c>D .
H & D>E|bC i =
1 EddlAn \ S —hB
% o o L | S A=
I T N
| —
AN L C — bC)MNQ
3 = = AN =2 h

RA bty Qg 4500,

; 5

.. : :
~ Eliminate unit productions from the grammar:

. S>A0|B — B

35 b --.;‘#-r

eI Gl TG
2 Cloye
g C—> A S%AD\“\O\Q
o J -
AV E :235\1 /Eq;m;ﬁ

Practice Examples

1. Eliminate all e-Productions from the grammar:

v

S > aSbS | bSaS | ¢

2.Eliminate Unit production from the grammar below:
S—>Aa|B]|Ca

B>aB|b C)
C->Db|D

D->E|d

E->ab

< Eliminating Symmetric Recursive Productions
(S=>SS, E 2 E + E etc. forms)

:‘j-Rewrite the grammar so that there is no Ionvger choice
¥ %—Replace the production S - SS with one of the following production:
N

o

=¥ [y L
(to

: o S SSI/ /* force branching to the left C
S> S,S”Y [*force branching to the right /\
then we add the production S - 81}/ T
el Q0 N /\
Example: Consider the grammar S \

S—>¢ 819(8)
S, 2¢

S 2SS > S SS,)\
S 2 (S) S>S, 5 5

S0, N — 5, d __—

v
= Example: o=1d+ ket rK
Ambiguous Grammar o v /1~
ESE+E|EE| E*E|EE]| (E)|id /| - E’””?
= — /
: | " \\ \11 |‘\
.3 |\ Unambiguous Grammar - -~ B 13
t—1E b e T T
E-SE+T|ET|T %, | i
T->T*F|BE| F|T/r) i) F
F— (E) | id /
_ P BT T
‘ (= I\T =
5 + ~
}W\ 4 ~7 /
i T s —n
|
CoE i \
dd

Eliminating useless Symbol G

Definition: A symbol X is useful , if there is a derivation of the foém:
SSaXp Swe | .
Otherwise , the symbol X is useless. U 5e 18y WM;'“\

Example: Consider the grammar

— ST=
S > aA|bB (5) —fr— (%) o) @
A->aA|a
B > bB
D> ab|Ea
E—>aC|d

Procedure:
Stepl: Compute Non-Generating symbols in G and eliminate them.

Step2: Computing Un-Reachable symbols in G and eliminate them.

=~ Example: 1. Eliminate useless symbols in the grammar A Rk

S%aAH:I\B Qg { lac}ﬂ D / /S ULDQ n— &

A-> aA|a AN
>«§Beb5 NG, > N on -4 P LJ

D> ab | Ea

E9€C|d ﬁUg_— {3/\:% uPraLbhe 214 201
Sl\f\d‘_'l S—)u\% & oA 4
N [ANEEN “ﬂ\q S .

55 ab)ia/| A—> aR]a
J

2. Eliminate Useless symbols in the grammar below

S—>aAla|Bb|cC
A-> aB H\,Q
B->al|Aa .

C > cCD
D - ddd

\

(epe e p_f‘w
350
L

a:? HW (—l\ ”
= Consider the grammar G:

LW A > bA|Bba|aa /_—\7

.~ B->aBa|b|D
. C->CAJ|AC|B J
% D>ale
.1 1) Eliminate any &-Productions. /l
¥ = 2) Eliminate any unit productions
“8 & 3) Eliminate useless productions, if any.
I\l ‘ NIV — wmclxm
\L wRek L iabiy jwﬂl(m“

L:Jﬁ

r"\f\ql

Z .

=- Consider the grammar G: | 28 @ C ¢>®

' A > bA|Bba| aa

B> aBa|b|D D4

. C>CA|AC|B N
._: D>ale A_\)JQH)%EQ ba |BF

1) Eliminate any e-Productions. I ‘ ‘(O]g_

- 2) Eliminate any unit productions 5= abufva Bl \bq
& & 3) Eliminate useless productions, if any. 3 \GU \Hﬁ } : A(&
-"I #. C %CH‘H—C‘D\ G
) N -_f:ulg)t} o AL NutBY

4. }) v C;‘S:{Ctl\o"D,E)E)/ /

A > L [Bbalbafea Jee (5D

g_\?dﬁmkﬂqb(]}
C—> chlh|acl
D >0

Normal form "™

. The restriction can be Imposed on the right hand side of productions in a

- CFG resulting in various normal forms. Normal Forms
~
1. Chomsky Normal Form (CNF) ' » |)
.- 2 Gre|bach Normal Form (GNF)V Chr::-msk')EcNhuJ::;r]'nalForm Greibach[grilr:r;walForm

& Definition(CNF): Let G = (V,T,P,S) be a CFG. The grammar G Is said to
% & be in CNF, iffall productions are of the form:
“ - EX. S—)AB[L CNT‘

A BC . s

or B—b
A 9 a This context free grammar is in

. Chomsky normal form.
& whereABandCeVandaeT.

Definition(GNF): Let G = (V,T,P,S) be a CFG. The grammar G is said
& to be in GNF, if—all productions are of the form: .
A2>aa <. § LABC o S

| wherea eV andaeT g5 =%
el

. .

: Problems: g, - 0™ o 3“%_@ C~ ABLC
: Convert the Followmgwrammdar to Chomsky Normal Form: \\ L[/J>A|PR1

s >
. S> 0A | 1B Pr>\/ =) —0O K\ ~>RE
.- A>O0AA|1S|1 Cw o §C
: 359155|03|1 | % -

S — 0R % —= R, 2 ﬂ —0 ;_/mgg@
—_ A ~
S— 1B S%A@H\ > | v
g_.,/k\ﬁﬂ:/—
A0k A PRA SO
SV ha > AR S
F—\—ﬁ bﬁlp\/ B) >A %R}%
1
. A — I A“’> A|S /Y _BPFBU
s \\g—f
8>8R B ABE
b é),lg Asly P e

£ Convert the Following grammar to Chomsky Normal Form:
.+ S —aAD

———>|le

ff' Convert the Following grammar to CNF:

", S - aAD

U- / \/
' A—aB|bAB QV @ b SN A
a.;, B H b | D % >J SL A é 7«

% ; D—d

@ﬁjﬁs SR) i

\> b — C\g\\jm — C/\)F
m_ G

EEEES //

ff' Convert the Following grammar to CNF:

.~ S > aACa etk @ @7 >@’ﬁ>@
~ A->B|a %\ \}
U Y DY U L

B—->C]|c
C—-cCle \’mw &—EM
Ny = (_/ &)}lg \/ \/
CD N o NC o |G LQKO\-MKQD\ /—B£—> |
i A la A <lafeC
] 2 —cle B = Cle
% C —>ch£ C -l
7

2Practice Problems

Convert the Following grammars to CNF:
So 1) S o 040[1B1] BB 2) S AAA|B
4= A = ad B
B = 54 B = ¢
4+ S
~
S o AB|CA 4) Obtain the following grammar in CNF
L = a7, u S =5 ABC .onsi | \ 2
B oo 50| B A —aC/D A e
C = b= B—>bB/E/A B, 3)
AL C - Ac/E/Cc

D“_.?a D%aa

' | r
._.U..r...
._.

o Tl

1-..._.
PUYR. e

g O kMl e O— 5 G4
\S\ESVYV‘SM) D CEHS pa

s - P 9D
~ Module-3 °- . j
A U b ~ S | LR

—

Pushdown Automata(PDA) o)

Content
-An introduction to PDA, Languages of the PDA

~ & -Designing PDA «\ g
' 8 x -Deterministic and Non-deterministic PDAs - o Ter\o—_q
- BX -Alternative equivalent definitions of a PDA-

- Introduction: An informal description of a pushdown automaton is shown in
- the diagram below. Such an automaton consists of the following:

=
— 4 Q_
alalbla|b|bla|bl|lalb|D tape IUD\ﬁc\\(\ bl&
‘ RM/\
vd JGL\
state control /i J- f’f\’\ N
I,
-1 A
B
A
A stack
_%jlzq

-There is a tape which is divided into cells.
-There Is a tape head which can move along the tape, one cell to the right per move.

-There Is a stack containing symbols and special symbol@ or Z,
-There Is a state control, which can be in any one of a finite number of states.

[one transition, the pushdown automaton

1. Consumnes from the input the symbol that it uses in the transition. If e is
nsed for the input, then no input symbol 18 consumed.

2. Goes to a new state, which may or may not be the same as the previous
state.

Py L %

3. Replaces the symbol at the top of the stack by any string. The string

could be e, which corresponds to a pop of the stack. It could be the same
syinbol that appeared at the top of the stack previously: i.e., no change
to the stack is made. It could also replace the top stack symbol by one
other symbol, which in effect changes the top of the stack but does not
push or pop it. Finally, the top stack svmbol could be replaced by two or
more syibols, which has the effect of (possibly) changing the top stack
syvinbol, and then pushing one or more new syvinbols onto the stack.

sl — me of

Pop = M) owg S LR dim

YOVl ——
U LW g a

———

o g\qw\Lmlx

NPD A, j)laﬁ

§ Definition: 5 n

/
A PDA can be formally defined as a 7-tuple: P=(Q, ., I, 98, q4, Z,, F)

The components have the following meanings:

| LA
(: A finite set of states, like the states of a fiaite-automaton. "
)
Ve A hmte ANALOT011S VCOITeS me ¢ - b
Yo A finite set of input symbols, also analogous to the corresponding compo el 1,
nent of a Wm Tj,\,\ —
I': A finite set of stack symbols

0 : The transition function: Maps Qx {X U e} X' 2> QxI*

—_

do: The start state

L,

— - (1 €
Z, : The stack initial(bottom marker) symbol. S\) €
F: The set of Accepting states or final states L((T | b) >
_ "_ -1 B

Example: A pushdown automata(PDA) for accepting L={ab":n =1}

'z
‘:: ‘\]7-0|C\20 ___l?‘gb\ e, - }E\O\Olg qU GHLQLD\C.
L," "'\qlclox ;o
P ﬁg\j
1: b.al£
3 1s b,a/g £, 2/z, ;lL) L]
% y \/L/\/\l)
s , wzoa6blLhY L
f a/e Pui b aala bl ¢
$ Sﬁ] \ﬁ | }
N DU : |
h s
—| S
X
— | &%
o(Q2)~@ ‘Z\
LY AN L4 4d {jlv
B AT
X =
‘T\?o/qzo R

L"I?-;"'

< Instantancous Descriptions of a PDA (17 <
W/ %)

we shall represent the configuration of a PDA by a triple (g, w,~),

where ‘ I

| J @ | | -
B

1. g is the state,
4 2. w is the remaining input, and
3. 7~ 18 the stack contents.

Conventionally, we show the top of the stack at the left end of v and the bottom
at the right end. Such a triple is called an instantancous description, or 1D, of

= the pushdown automaton. O
2 @ Moves of a PD% 7

Let 17— (2, X, 1,0, qn, Zn. £") be a PDA. Define = |, or just = when £ is

=

understood, as follows. Suppose d(qg, a, X') contains (p, o). Then for all strings

w in X7 and G in ' -/ \
Ii (mf} S (pow,ad)y\—= - e (by 7t g

L | 13 %
We also use the symbol = torepresent zero or more moves of the 1 PDA I & a

P 1D

e

= Example: Show the moves made by PDA for the string “aaabbb” g§ \ > £ L
Or -
Give the sequence of IDs the PDA is in for the string “aaabbb”

h'alél
— a1 il)...e D_P_D R
a, ¥faz-

ci‘z_Q

:'.'T'f) e - = =
?...ﬂ 4 t f g oatr s Gt £ ‘ﬁu

a, alaa

Required PDA \ ‘j \]\

\ Y \ K J/
(7 L[:L/M\DJ)

G el bl 2. #(1\ sabll qzs (. L san) [~ (7,
(7, B «oz) (1, L/U\ZJHW\] c 2)F (jiile
\@l oaob}:h?o))i (C\l\w E 2, \) | heepy

& also show the sequence of IDs for the string “aabb” .
o NP #
a 1b qzc, _ o @

\ aq aq L T quL\J Z“
: 3 8C Zc. Ir /\\
E el

= Example: Design a Pushdown automata(PDA\) for accepting L={a"h":n>0}

sLL e2)) (7, 50kk, 2, ‘*‘”'“La =)
a,z(,\za ﬁl Ln) (5,5 o
: i I (Clou \QL”MZ%
daa bbb 7

Language of PDA | e d et g\
A language can be accepted by PDA using two approaches:

1. Acceptance by Final State: The PDA is said to accept its input by the
final state if it enters any final state in zero or more moves after reading
the entire input.

Let P=(Q, >, I, 9, q, Z, F) be a PDA. The language acceptable by the final state

can be defined as:
0 \ D

L(P)= {w | (qo,w, Zu}i (g.e.a)} forsome state g in Fand any stack string o

2. Acceptance by Empty Stack

On reading the input string from the initial configuration, the stack of PDA gets
empty. A
Let P=(Q, >, I,0,qy Z @ be a PDA. The language acceptable by empty stack can

be defined as:
L(P) = {u‘ ‘]l] 0w, Zl]) fj . r)} for any state q.

Since set of accepting states are irrelevant, We shall sometimes leave off , seventh
component from P.

% What does each of the following transitions represent?

#1602 =(q.a2)

.

326(pa Z) =(q,

6. 8(p, &, Z) =(q,

@“_Ffi@ — PUS\f\Lj
8) @ ali\é :Gl: N POP k \
@ Ml@ : e)

E"{ U\\:\ﬂ A\V\ 7/ 0

tDesigning PDA

1 Design a Pushdown automata(PDA) for L={a"b*": n=>1}
2 («42,,

if Design a Pushdown automata(PDA) for L={a*b": n2>1}

-
-
=i
o=
.

mllb‘ﬂzo
O\ICL‘ ! \0.9|E
: -
Glg /(1‘(?@ﬁ Q/Z”ZB \\IiLLllé;
/ - o gade b 0
| NN~ T
T=hg, Zo% ;2 C[U | w\alﬂhlLQW\I<IJ--°“C\L”L,QZ;F ¥ (%’jé
[=<
-T
=] \/

Tl

£ Construct a PDA to accept the language L ={wcw"|w € {a,b} * and wR is reverse of
5 by a final state —

gwibyal PPty o Ge eGSR
3 \J . —

CL

I
¢, 2|2 b, b€ ‘L%CL\“‘Q_
< ale

70\ ST/ SN

P

i

-.._
= 48 gt £
[4]

% Design a PDA to accept the language L ={ww"®|w € {a,b} * and wR is reverse of w }
E Qpas
"'ﬂ;)M g(la‘ L

Moves by PDA: on “ aabbaa”

e A

{

Practice Problems = at:

,__

1. Obtain a PDAto accept the language L={w € {a,b}*| Ny(w)=N,(w) }

e OIL]O\OQEC\(N
2. Obtain a PDAto accept the language L ={w € {a,b}*: N,(w) > N,(w) } by final state.

v

i 3. Obtain a PDAto accept the language L ={w € {a,b}* : N,(w) < Ny(w) } by final state.

;'f. 4. Design a PDA to accept all the strings of 0’s and 1's having substring 001. %’ P\L

N (W qlob o 7o) LJ:: QLLQLG\)
"

Lﬁ «bla, 2. |

\WQ_] cC

L

Practice Problems = at:

,__

1. Obtain a PDAto accept the language L={w € {a,b}*| Ny(w)=N,(w) }

L.
o R0 Ek&"\ %
2. Obtain a PDAto accept the language L={w € {a,b}*: N,(w) > N, (w) } by final state.

J Vi

3. Obtain a PDAto accept the language L={w € {a,b}*: Ny(w) < N, (w) } by final state.
& | 4. Design a PDA to accept all the strings of 0’s and 1’s having substring 001. %’ P\L

5. Construct a PDA to accept strings of a’s and b’s ending with ab or ba.

Equivalence of PDA and CFG

G PDA by PDA by
rammar empty stack final state

From Grammar to Pushdown Automata LNy

-Given a CFG G, we Can construct a PDA that simulates the leftmost derivations of G.

Let G=(V, T, P, S) be a CFG. Construct the PDA P that qfc;epts L(P) by empty stack
< \V

such that L(G) =L(P), where P=({q}, .T VUT, d,q, S —<

™= g 7 r
5! § Method: PSR - (4 = PR
b | : /_\/ [W\T‘L‘\l
1. For each variable A, define transitions: - N
8(q,&,A)= {(g,B) | A—B is aproductionof P} - >@
2. For each terminal a, define transition: \‘® B
S
6(q, a, a) = {(q, &)}

:f Convert the following grammar into Equivalent PDA.

.' e - h c = ﬂl\cw
L
C—>a CA/‘?B

% S R e

E B LA

- . 8/k
J125)= Gowe) \@:‘;‘?/q
5(”{ = [ﬂ {@ “Bj U) b,gﬁ

Practice Examples

W PR

1) For the grammar: 2) Convert the following CFG to PDA
S-> aABB |aAA | € S > aSa | bSb |aa| bb
A> aBB | a i e coloee
B> bBB | A 3
- C—>a 'lﬂ/— C—;|5(UQ|3
% Obtain the corresponding PDA & 5| e
= g €, A s h g
E] R[4

77

THANQ....

w Ty

e g |..- .* * o

«h Dl

g e
RUY R RN

Module-4

J

VA
M= < Algorithms and Decision Procedures for CFLSs:
® 5 (v, -Decidable questions -/

-Un-decidable questions.”
“*Turing Machine:
-Turing machine model, Representation,
-Language acceptability by TM,
-Design of TM,
-Techniques for TM construction. Variants of Turing Machines (TM),
-The model of Linear Bounded automata{‘/LB p\\

TextBook-1:14.1,14.2 TextBook-2:9.11t09.8

—

-, £
=
25
T
2
;“ -
| |
o
i -
- L}

The Decldable Questions
| -

-Membership we|

Given a CFL L and a string w, iswin L ? -- Can be answered
-Emptiness | — é k\
GivenaCFL L, is L=Q7 -- Can be answered
-Finiteness

Given a Context- Free Language L, is L infinite ? -- Can be answered

I AU TEVEN er _,;%”\lWLI . b,oi

Membership
Algorithm: Using Grammar

decideCFLusingGrammar(L: CFL, w: string) =

BPRRT

1. 1f L is specified as a grammar G, simply use G.
2. 1f (w = ¢) then 1f (S 1s nullable) then accept else reject.
3. if (w+#¢) then
3.1. From G, construct G' such that L (G') = L(G)-{¢} and G' is in CNF.

3.2.1f G’ derives w in (2 * |w| - 1) steps then accept else reject.

r, A \/
= Example: Suppose L={a"%":n>=1} L,_{ Q_L,/ celal %
S—->aSb|ab LA“—C‘C\C’\\C‘EL\:%L &xlé—lj\\:;“\"
: A—=T3C —
% % o
| ah; A=y &
(& S ASB‘P\B
|
\LA BN / J
- > = MBS A SR 2 el
A|—7 AS — C«SB
pY —A 3 G\JMEB
b b =5 a AS R
— 2 oo S B
N N RN

2 amaRBl = aaskBe
= aco LLR D soablh

Emptiness
% Algorithm

- Let G =(V, T, P, S) be a context-free grammar that generates L. L(G) = @ iff Sis
- unproductive (i.e., not able to generate any terminal strings). The following
».. algorithm exploits the procedure remove unproductive(non generating) symbols
to remove all unproductive non-terminals from G. It answers the question,

“Given a context-free language L, iIsL = @ 7.

decideCFLempty(G: context-free grammar) =
1. Let G’ = removeunproductive(G).
2. It S'is not present in G’
then return True
else
return False.

A
= Example:

.
1) S> AB|Bb
A= a

] [. -r.’c ™ l.i iy - -"‘_
(i ifwi- 'rrl:.rIr ':'?:"l"

+ ¥ 2) s>AB|B
S8 ADale
B> b

Finiteness L fmieu/ingue |

Let G =(V, T, P, S) be a context-free grammar that generates L. is L infinite?
There exist an algorithm to decide whether L is finite or infinite.

l 5 | Algorithm

decideCFLinfinite(G: CFG) =

1. Let G'= G with €, Unit and Useless productions removed.

2. Draw a directed graph whose nodes are variables of the G’

3. If (graph contains a cycle)

then (i
return true;: /I L 1S Infinite e N&
else A @

return false; // L is finite @_3@

:;;:Example: G_—_ &‘; | (Q) 1 iﬂ\/\?{t

S-> AB | ab
A2 a

B>aD|b S @

D-> bE
@)

E—->e

G —E)

Dyt bt L O
P~

- '. § & a g) L1 U
4 E-Ee gvﬁ 2)—(0)

0 [e L (5))8 T
DL [TH o0

The Undecidable guestions

 Given a Context-free language L, is L = T A %

» Given a CFL L, is the complement of L context-free?

* Given two context-free languages L, and L, i1sL, = L,?

. . A
* Given two context-free languages L, and L,, iIs L, L,?

A
* Given two context-free languages L,and L,, IS LlﬂLZ:®?x

 Given a context-free language L, is L inherently ambiguous?

.7<
 Given a context-free grammar G, is G ambiguous?

Note: No algorithms or Procedures exist for all the above Questions as of now!

¢ Turing Machine(TM) 7",

; or

3

- BRa
J- e
"

)
% Alan Turing in 1936, gave various models using the concept of Turing
machines.

—_—

In the early 1930s, mathematicians were trying to define effective
computation.

o

= & Itis interesting to note that these were formulated much before the A
2 B electro-mechanical/electronic computers were devised. \

It has been universally accepted by computer scientists that the Turing
machine provides an ideal theoretical model of a computer. O 1o

| CS\!
. . . LN U
Turing machines are useful in several ways: Sl oo~
-As an automaton, the Turing machine is the most general model for accepting type-0 Languages
-It can also be used for computing functions etc... T
AN

= BASIC Model of TURING MACHINE(TM) —ZVT\M

-, L~ n ©

+ 2 a, | a 53@5 bib g .
‘; R/W head A(\ Tape divided into cells éb
:_1 and of infinite length < AFW\

7.2

,‘U: :l

Finite control

Fig. Turing machine model

. @@ head.
& It has one tape which is divided into a number of cells. The block diagram of the
basic model for the Turing machine is given in Fig.

& Each cell can store only one symbol. The input to and the output from the finite state
§ automaton are effected by the R/W head which can examine one cell at a time.

= BASIC Model of TURING MACHINE(TM) Contd...

"h'ln one move, the machine examines the present symbol under the R/W
-~ head on the tape and the present state of an automaton to determine:

¢ a(l) a new symbol to be written on the tape in the cell under the R/W
,_; head,

(i) @ motion of the R/W head along the tape: either the head moves one

cell left (L) or one cell right (R), %{1

(iii) The next state of the automaton, and s

N (iv) whether to halt or not. @
; - i

7 Poih— §

” (&

% Definition:

AEATAAN

[A Turing machine M is a 7-tuple, namely (Q, Z,T°, 9, q,, b, F), L= &o'l \T
| where; o

- 9 S Vi

. % . @ 1s a finite nonempty set of states. 2 C— (- lﬂ ‘FL”

. I'1s a finite nonempty set of tape symbols.

. b e I'is the blank.

. 218 a nonempty set of input symbols and is a subset of T and b ¢ .
. 0 is the transition function mapping (g. x) onto (g, Vs, D) where D
denotes the direction of movement of R/W head: D =L or R according
ﬂﬁ/thﬂ movement 1s to the left or right. -

. o € Q1s the mitial state, and s \ /
: FJ; O 1s the set of final states, LT! \\ > Lj (\{7\ ’L R

REPRESENTATION OF TURING MACHINES (1

We can describe a Turing machine by employing:
. T
1. INSTANTANEOUS DESCRIPTIONS(IDs) oV A ij\

2. TRANSITION DIAGRAM(TD)
3. TRANSITION TABLE (TT) ~

REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS(IDs)

Snapshots' of a Turing machine in action can be used to describe a
Turing machine. These give 'instantaneous descriptions' of a Turing
machine. 9

J
An ID of a Turing machine is defined in terms of the entire input string
and the current state.

An ID of a Turing machine M is a string , where ¢ Is the present
state of M, the entire input string is split as af , the first symbol of B is
the current a symbol under the R/W head and 8 has all the subsequent
symbols of the input string and the string a is the substrlng of the mput

string formed by all the symbols to the left of a.
(L] A
— /
1

q W

Lﬂ-;"'

~ EXAMPLE:
A snapshot of Turing machine is shown in Fig., obtain the instantaneous

‘description(IDs) n
f\u\fm\ﬁ/ﬁ =al=

ol 5
L~
? (» b 34 31 52 51 32 32 51 34 ag blb \ L

- 1 F? R
R/W head \J (‘\/\)
v
: G
— Tiy, a, 64, 6, 7,4 O, %
e D\ B

Solution

The present symbol under the R/W head is «. The present state 1s ¢5. So a,
is written to the right of ¢s. The nonblank svmbols to the left of a; form the
String aya,a,a;a-da-, which is written to the left of g-. The sequence of nonblank

symbols to the right of a; is aya». Thus the 1D is as given in Tag.

4
< Representation of IDQ< B

3 345—152313252 {?3
Left sequence Right sequence
Present Symbol under
state R head

Notes: (1) For constructing the ID, we simply insert the current state in the
input string to the left of the symbol under the R/W head.

(2) We observe that the blank symbol may occur as part of the left or right
substring.

= REPRESENTATION BY TRANSITION DIAGRAM
We can use the transition diagram to represent Turing machines.

The states are represented by vertices. Directed edges are used to represent
.. transition of states. Each edge has label described by triple (x, y, D).

E L\

i—*‘:.': &(p,x)=(Y,q,R)

Transition Diagram T - [eqpih

= REPRESENTATION BY TRANSITION TABLE

’.:2 We give the definition of & in the form of a table called the transition table

5 Consider, for example, a Turing machine with five states dy, ---» Os, Where
g, IS the initial state and g is the (only) final state.The tape symbols are
0, 1 and b. The transition table given in table below describes 0.

| 5 C 1
Present stafe - Tape symbol 9 l —
/b ’ ! ! \ { = {D / l
=1 / @ 0Rg, = -
ey
% bRé 0Lg; g, (Mo==
0 - bRa, bRgs
s ORgs ORg, 1Ra,
! 0L _ _
@ : ‘ ! The initial state is marked

A% Q!@) Transition Table é} (“IO/Q\WIth - and the final stateO
74

4=
L

-

S AN -
- W

DESIGN OF TURING MACHINES Kt

‘;;.DeS|gn a Turing Machine to recognize all strings consisting of even number of 1’s.
j: Obtaln the sequence of IDs to accept string : 1111

LIS M=(Q, 5T, q, b, F)
FPEFe 1 =1 o
%\M ‘C—):KD (VA S
e T =G = Ll
P 9 LR,
> bbb 7, bbb Uik
- shat 3
)) S el
T

&M
Design a Turing Machine to accept strings of a’s and b’s ending with ab or ba

(Zigqlb\(%/71"“1\“\

= :

= Practice Problems

1. Design a Turing Machine to accept the I={ w : |w| IS even and w consisting of
asandb’s}

2. Design a Turing Machine to accept the language containing strings of 0’s and
~ 1’s ending with 011} L

e
N

B

4

v BT WS
- m E el

W & 3. Design a Turing Machine to accept the language L = {w | w € {0,1}* }
¥ £ containing the substring 001
X I) [CE,@,M

\ R 30N
>

(BRI (=R
4 ng\EJM

@

g

5 Design a TM that accept L={0"1" |[n>1} Tm

n=>dqu

£

b
BRI L .

L L U

vyl VM0 .)
s e g0l |- el [29,00
- 4 %"DU 1A | e
M A ’dmotfs\j ‘_Llllﬁlﬁmj

\(‘7 O//
-5'
~ Design aTMto accept the language L ={a"b"c" |n =1 }. Draw the Transition

* diagram and show the moves made by TM for the string: “aabbcc”

5? (b %”Mwﬂkﬁgﬁiﬁ/f—ﬁ

C qaR?
I R)
y i (Zale—\ 7 —)\K\\ak\
: 7\(QL\@ CRTN <g)0 b L) Ff e, M)
b I L%I\.})/ L)
{_‘;‘ﬁJL’W

Move by 1™

qalobee LV\D\ CI{QBCCFK” il
]

£ 7
1avb 5,60 \f“mg‘jzkza

_tc@loch W2

L %g\’gﬁ Locfwg o4bac

- izl
=0 289,

‘TDU\R\&LCC \—1

)__ I R P

Design a Turing Machine to accept the language L={1"2"3"|n=>1}

A M |

LET] ol
)
_ 11273

- [’_\

Design a TM to accept the following Languages:
1) L={wwR |we{ab} andwR reverse of w}

ELANGUAGE ACCEPTABILITY BY TM

The Language accepted by TM is defined as follows.

g Let ¥ =(Q.L.T. 6. q. b,) pe a Turing Machine. The Language L(M)

accepted by M is defined as:
\—J \nY
L(M)={w|qgow [~ apB ,wherewe 2*,peFand a,B €T }

T

I —

& No algorithms exist to determine and tell whether TM always halts - Undecidable Problem

—_—
p—

\fié Design a TM to accept all set of palindromes over { 0,1}. Also draw the
= transition diagram and Instantaneous Description(IDs) on “10101". -

b

1
}_[ablcﬂlllox, LrDlOl‘i,L-’)_ \aoloﬁll b
)—Iao[C\QDID\—BD@OH'L%DIOL:
9 bolokfbaolobl—

Lo ..pgmh\\glop...

TM to Compute a function M e
o S Tyt 20 s

:"Z Obtain a Turing Machine to compute 1's Complement of a given binary number.

leug(—hoimlﬁ fof => olo

“. Examples:

3 7] p
+ 1 P
" o oy
e SR
o (=0 105]
l_l° DHOLFED'ODLI—%MOM
/l\ /|\ /T
1, T,],
(,, Lolo| L;u_» Lo |$\]L_\oh){\b\\a\,l,,%l0|b
/T q| q, c]-l
i

Obtain a Turing Machine to compute 2’'s Complement of a given binary number.

o 0%)

J, <
—_0lloulg—

(OI L) Al

‘_ocrhl_tcm m}o\ (100lo

—oll00f, 10

)_o\)‘yuo’nlu\—ol\mu@l()
W 3 bHDDH‘O(Lul\nblnm\o_l—bno()|jlg

- Q

- D\lmﬂl \0 ‘_0||,£5[1Dr|0} Qlc,Lq]|Q

- @ (U] 09,)DI]lDl_j(grob\HQ

. \gloalug Féﬁg@:@\cm\

o

LN iy W
£ SUPPLEMENTARY EXAMPLES(Languages) © | = Sl

= 7 19
1. Design a Turing Machine to accept the language L={a"b*"|n=1}

E

3 2. Design a Turing Machine to accept the language L ={w | n(w) =n,(w) }
¥ * 3. Design a TM that reads a string in {0, 1} * and erases the rightmost symbol.
e

W/\L.\\J\\”\” ”,_’L
v Lo bbo)=4

JEL

Acceptance by TM

Accept Input
String

Reject Input
Strin
9,

)

p

If machine halts
In an Final/accept state

If machine halts

In a non-Final state,
or

If machine enters

an infinite loop

}ETECHNIQUES FOR TM CONSTRUCTION

' -In this section: some high-level conceptual tools to make the construction
. of TMs easier for addressing simple/complex problems.

baGc

¢ § -The TM defined & studied till now is called the standard TM(single Tape)

S
% There are 4 Techniques:

¢ 1. TURING MACHINE WITH STATIONARY HEAD

% & 2. STORAGE IN THE STATE
9 B 3. MULTIPLE TRACK TURING MACHINE

' B 4. SUBROUTINES
8 5. CHECKING OF SYMBOLS

L=

e o

ﬂ

C GL-|

Cll- 2

YL — 3

A standard TM is capable of
accepting some of the
languages, called Recursively
Enumerable(RE) language. But
by doing some kind of
modifications, we can increase
the number of languages
accepted by Turing Machine.

(64,1
1. Stationary Head ®%

* In the definition of a TM we defined &(g, a/ as (g, vy, [}) >
where D= Lor R o= LR %y

* Suppose, we want to include the option that the head
can continue to be in the same cell for some 'mput\
symbol. Then we define 8 (. a) as (¢’ . S). d1,:\=(7) 5)

* This means that the TM, on reading the input symbol
a, changes the state to q and writes v in the current

cell in place of a and continues to remain in the same 49
(%7

cell. @ SN

* [n terms -i:nf' 1[5,
wigaX |- wa yx
X B
Thus in this model 0(g. a) = (¢. v, D) where D=L, R or §.

i PN/

= L o
[+

L5 T TR R A IO
' i i'l ¥ ! e of ‘.'.' , "..I*... - ') . -
; - re
A PO P Y SN RN TELEY.

2.Storage in the State

¢ State 15 used in FA or PDA or TM, to ‘remember
things.

* We can use a state to store a symbol as well. So the
state becomes a pair (q, a) where q is the state and a 15
the tape symbol stored in (g, a). S0 the new set of

states becomes () x I {TTT %
@ @n .’\%@ (glﬁl\z\

ﬁ_/

L.
o
="

3. MULTIPLE TRACK TURING MACHINE

LT T R

* In a multiple track TM, a single tape is assumed to be
divided into several tracks.

* S50, tape alphabet I is required to consist of k-tuples of
tape symbols, k being the number of tracks.

* Hence the only difference between the standard TM
and the TM with multiple tracks 15 the set of tape

symbaols, Lflh,a
* Standard Turing machine: *ch\/_’_\; /—:\iﬂjﬁﬁ
Tape symbols are - elementsof ;7 7 T
* TM with multiple track: e E——
Tape symbols are- [==!"'0 SR %)
=y g

P

)
e

._.
i i €S
i Ea &

k
#

ol
&

X
= TM with multiple tracks, ety | cyo) \(
but just one unified tape head 1we

One tape head to read
/ k symbols from the k tracks
PRI & at one step.
Track 1 .| [
Track 2]' -
Trackk | | ® v

« TM with multiple “tracks” but just one

head E.q., TM for {wew | we {0,1)")
but w/o madifying original input stnng

BEFORE- S -
I. 1
l”" Tape head Tape head ~.__
”_Ie Bl0]1]0]c|0]1]0]8] . Track1|_ [B]8]0[1]0]c|0]1]a|8]: . Trackt
‘ ! i b i . .?_—
_|s[sle[e[s|s[e]8|8[8| _Trmckz _ [B]B[x|[X|X|c|¥]¥]|¥|B] . T2

Second track mainly used as a scratch space for marking '*

L opatbw U jD-\Lg pr-
n 4 SUBROUTINES |-

* Subroutine- some task has to be done repeatedly.

* TM program for the subroutine has an initial state and

a return state. After reaching the return state, there is
a temporary halt.

* For using a subroutine, new states are introduced.
When there is a need for calling the subroutine, moves
are effected to enter the initial state for the subroutine
(when the return state of the subroutine 15 reached)
and to return to the main program of TM.

Ex: Design a TM for performing multiplication of two

osltive Integers. [gl

g B T”\b

ES(C]/ L-\.\) = (qolllD\

*'-:_f Explanation with Example: TM to perform multiplication of two positive integers

78 STM

Variants of Turing machines -,

B

. :3 The Turing machine we have introduced has a single tape. 6(q, a) is

¢ ;; either a single triple (p, a, D), where D =R or L, or ignot defined.
3

(BfvD\
S(q

In this section, we introduce two new models of TM: ©

v4

2 & (i) a TM with more than one tape.

8 (i) a TM where 8(q, x) = {(0; Y1, Dy). {(dz, Y2, D), -.. ,(qnﬁn, D)}
' The first model is called a Multitape Turing Machine and the second

a Nondeterministic Turing Machine.[N |M]

: 1) Multitape Turing machines m 1’<| L >

A multitape TM has k tapes, each with its own read/write head.

- Initially, the input is written on the first tape, and all the other tapes
- :3 are blank, with each head at the beginning of the corresponding tape.
B
il For a 3-tape TM, a transitjon will look like

(0, % ™)\
XA

{0.1,1).xyx) ,(RR,L) }

o>

| - replace x on Tape,, y on Tape, and x on Tape;;
&/ * move Head, right, Head, right and Head, left;
& °* go to state g2.

"l-l‘

-: 13
]
:
" oy

“ Structure of multitape TM

A move depends on the current state and k tape symbols under k tape
= heads.

Finite
control

FIPRRT
2
L
,—_t
7
: é
(

In a typical move:

(i) M enters a new state.

(i) On each tape, a new symbol is written in the cell under the head.

(i) Each tape head moves to the left or right or remains stationary. The heads move
independently: some move to the left, some to the right and the remaining heads do not

MmOoOVve. —

Z Ex.: Addition of two Binary Numbers(discard final carry, if any)

ol Y— 1 N
+7a||o\[f7‘> (OJ:,) (|00)LLSL
B 8 2 ///\
e
Ly
5 ERNBIEE
d ¥ L -
| g)51 lifo[BT - =
: v
{5 (’M —
Uy ok

“’-ﬂ'mke_'
= Every language accepted by a multitape TM is acceptable by some
smgle tape TM (that is, the standard TM). MW, B (H\ — L[M)

- 3 Definitions:

~= Running time: Let M be a TM and w an input string. The running time of
&l i~ M on input w, is the number of steps that M takes before halting. If M

& '3 does not halt on an input string w, then the running time of M on w is

- & infinite.

& Time complexity: The time complexity of TM M, is the function T(n), n
~ B being the input size, where T(n) is defined as the maximum of the
-f running time of M over all inputs w of size n.

AN DA bl - - -\ P

TN

L;éfl/l_ —

s \\;’\BFS‘“
% T\M 11) Non-Deterministic Turing machines(NTM)

A Nondeterministic TM iIs allowed to have more than 1 transition for a

B - given tape symbol: 5 o Aepe (ypalad
S ?‘b (a’ X, R /—_J ~ [—:)J"A ‘519}\ \0&
) iC])

: [D, U \o /
B /\

a,y, L) IDL .
DH

. & Astring is accepted, if one of the branches of computation takes us to
. @@ the accept state.

ML

Note: Every Nondeterministic TM has an equivalent Deterministic TM (i.e. Standard TM).
R —

N TG

A — \ 1 LD\ \\ \ S (VL
£ pefinition: 4 | """)4y, i\ﬁ) {4 m,%,ﬂ
7 Qe ekl A \5@3

A Nondeterministic Turing machine is a 7-tuple (Q,2,I',d0,q, b, F),

_ * Where:

3 1. Q is a finite nonempty set of states
2. T is a finite nonempty set of tape symbols
® 3. be Tis called the blank symbol

-

~ is a nonempty subset of I'. called the set of input symbols. We

assume that b ¢ L. KL, R c
R B

5. ¢p 1s the mitial state
6. F < O 1s the set of final states

7.8 is a partial function from ©Q x I into the power set of X I' X
{L. R}.

) ~
Note: Ifq € Q and x €™ and 8(q, X) ={(d; Y1, D1), {(A2 » Y2, D2), --.(Qy ¥, D) }

then the NTM can chose any one of the actions defined by (qT , Vi D(q) fori=1.2....n. ~

f." Example: NTM to accept all the strings of a’'s and b’s ending with ab or ba
= o B

THE LINEAR BOUNDED AUTOMATON(LBA)

(A restricted form of Turing Machine)

A Linear Bounded Automaton(LBA) is a Non-Deterministic Turing
machine which has a single tape whose length is not infinite but
bounded by a linear function of the length of the input string.

This model is important because: (1) the set of context-sensitive

languages is accepted by the model. and (2) the inMe IS
restricted in size.

-~ & It is called the linear bounded automaton (LBA) because a linear
'8 function is used to restrict the length of the tape.

LBAs are not as powerful as TM...

~

The LBA can be described formally by the following set format:
L),

M=(Q,2,1,08, g, b, ¢,$, F)where
\/\/\/\ff/_/—- i Zf()/ \ |¢1 LGP&
Q is finite nonempty set of states

' Is a finite set of tape symbols
b € T Is called the blank symbol

2 Is a nonempty set of input symbol

J, IS the initial state.

F € Q is the set of final states

O is a transition function.

€ , $ € X are input left-end and right-end marker on tape

respectively and are special symbols.

Model of Linear Bounded Automata(LBA): Block diagram

- n cells -

3¢ | s| %

p . : < v 2
w There are -tWO tipes. one 15 / R head moving to the right only
: :3 called the input tape, and the input 3Nt

B =3 other, working tape. Finite state T -

= On the input tape the head control head
B - never writes and never

—

%2 moves to the left. kr cells

LT =¥
Ly " '.'Eh

. 'f On the working tape the head can |

; =% modify the contents in any way, |
2 =3 without any restriction. :
Ed @ Where k is a constant specified in the ka;ﬂg e
=& B8 description of LBA.

Whenever we process any string in LBA, we shall assume that the input string is enclosed

within the end markers ¢ and $.

$ is called the right-end marker which is entered in the rightmost cell of the input tape and
prevents the R head from getting off the right end of the tape.

¥ C is called the left-end marker which is entered in the leftmost cell of the input tape and prevents
the R head from getting off the left end of the tape.

::?-;"'

= The language accepted by LBA M IS defined as:

an
-

¢|D\ D\$ D \/

L) = (e @- 0 S BiS 0 ad) oL

for some g € F and for some integer | between 1 and n.

. In the case of LBA. an ID is denoted by (g. w. k). where g€ O, we T
™ & and k is some integer between 1 and n. The transition of IDs is similar except
4 B that k changes to k — 1 if the R/W head moves to the left and to k + 1 if the
' = head moves to the right.

S The Class of Languages accepted by LBA is called Context-Sensitive
- @ Language. -

L R L L v
—ﬂ ..-.'-_. u .U ph W @ #
LT o4 T e

Presented(online) by : Dr. S G Gollagi

BE, MTech,PhD., LMISTE,MCSI, MIEEE

(for University of Toronto, Canada)

Topic: Decidability and Complexity

Decidability:
8l . 1.The definition of an algorithm, Decidability.
< 2. DeC|dabIe languages & Undecidable languages.

S ¢ 2.Quantum Computation:Quantum computers.
& 3.Church -Turing thesis.

Textbook - 2: 10.1to 10.7,12.1, 12.2,12.8.1, 12.8.2

- 1. The definition of an algorithm, Decidability

. -An Algorithm is a finite, well defined procedural steps to solve a

. given task. The algorithm is terminated after finite number of steps for

i, any input. <t e b oo\ - fe Ry Uit
§ & - il v M e, Pritead”)

b =4 Y \i - —%‘T/

¢ EX.: Algorithm to add two numbers.—

(i
I o C4o? d‘\w ol
Euclidean algorithm for computing GCD of two natural numbers. /

The formal definition of algorithm emerged after the works of Alan
% & Turing and Alanzo Church in 1936.

& The Church-Turing thesis states that any algorithmic procedure that
' & can be carried out by a human or a computer, can also be carried out

by a Turing machine. Lalp> z=5TM
32 e

—

8 Thus the Turing machine arose as an ideal theoretical model for an
i algorithm.

L
¢ Decidability: ® -

.. As an algorithm terminates eventually, the TM also terminates. The TM
- halts in following two situations: /

. 1.When a TM reaches a final state, it halts (accepting strlng)

2.When a TM is in some state g & next input symbol is ‘a’ and if the

_ % transition &(q, a) is not specified, it halts(rejecting string) .

& [But, there are some TM that never halt on some inputs in any of the
! & above situations. o

Fﬂi—

“ B So, we have to make a distinction between the language that are
' & recognized by TM & Halts on all input strlngs and a TM that never halts

g ON some mput stri va

L'{ N T et TR polt
\/L_e SN ~) (||1\

i

e -

= Recursively enumerable(RE) Language: A Language L €2* is RE iff there
-, exist a TM such that L = T(M), where T(M) Is the language accepted by
~.* Turing Machine.

() if w € L then w is accepted by M on reaching the accepting state
& M halts.

(i) if w € L then M eventually halts, without reaching an accepting
state. -

Note: The Conditions (i) and (i) assure us that the TM always halts, accepting w
under condition (i) and rejecting under condition (ii).

TN

—

Decidable Language

:': A problem/Language with two answers (Yes/No) is decidable if the

- corresponding language is recursive. In this case, the language L is also
& .2 called decidable.

f.

f: Undecidable Language HR
@LL LM{;L

% = Aproblem / Language is undecidable if it is not decidable. VL T"V\“ﬁi

Note: A decidable problem is called a solvable problem and an
undecidable problem an unsolvable problem.

= 2. Decidable and undecidable Language

. In this section, we consider the decidability of regular and context-free languages.

a b
Does ‘/;@ accept input abb!?

* We can formulate this question as a language:

Appy = (B, »): Bjis a DFA that accepts input »/}

Is .4,., decidable?

(g0) (gl)) (abb)

I

V74

= Theorem: if Apga = { < B, w>| B is DFA that accept w }, then Ay, IS decidable.

> Proof: Let B = (Q, 2, O, q,,F) be a DFA. We have to construct a TM M that always
- halts & accepts L(B) We know that DFA always ends in some state after reading the

5 3 string w._

b S Now, we can constructa TM M that simulate DFA as follows:
8 ' 1) Let B be a DFA & w an input string. <B, w> is an input for the Turing machine M.

= 2) Simulate B and input w in the TM M. Here, TM M checks whether input <B,w> is valid
iInput. If <B,w> is invalid then TM M rejects and halts. If <B,w> is valid input, M writes

the initial state g, and leftmost input symbol of w. It updates the state using 0 & reads

g the next symbol in w.
o . 3) If simulation ends in an accepting state of M, then TM accept <B,w>. Otherwise, M

rejects <B,w>.

™ It is evident that M accepts <B, w> iff w is accepted by the DFA B.
B Hence, Ay, is decidable Language.

¥]

Is Language Apg, decidable?

Does there exist a TM that accepts all members of Ay, and rejects all other inputs?

Algorithm: Input <B,w> where B is a DFA & w an input string
1. Start
2. TM M, simulate B on string w
3. If simulated B ends in accept state
then accept <B,w> and halt.
4. If simulated B ends in non-accepting state
then reject <B,w> and halt.
5. Stop

Since , there exist an algorithm to answer the problem.

Hence , Apg, IS decidable. . .
- (| d el “Mﬁk (?

Perform simulation:

state input symbol

W
§ Ly I n

e
3 ((g0,gl) (a,b) ((g0,a,q0) (g0,b,qgql) (gl,a,qgl) (gl,b,qgl) (g0) (gl)) (abb)

.~ Definition: Aggg = { <G, w>| the Context-Free Grammar G accepts the input string w }

Prove that CFL is decidable Language
Or

IS Acrg decidable Language? Every context-free language is decidable.

Proof. We convert a CFG into CNF. Then any derivation of w of length n requires 2n-1
© steps, if the grammar is in CNF. So, for checking whether the input string w of length n is
=5 in L(G), itis enough to check derivation in 2n-1 steps. We know that there are only finitely
many derivations in 2n-1 steps.
Now, we design a TM that halts as follows:

3 1) Let G be a CFG in CNF & <G, w> is an input string for TM M.
1 & 2)ifn=0, list all the single-step derivations.
4 3) if n #0 list all the derivations with 2n-1 steps.
| B8 4)if any of the derivations in step 2 or 3 generates the string w, then M accepts <G,w > &
' halts.
else

M rejects <G, w> & halts. <G, w> is represented by representing the four

components (V,T,P,S) of G and input string w. The next
step of the derivation is got by the production to be applied.

Example: Consider the CFG for L={a"b" | n>=0} bl 2 St

= R [T -"an'
Ll i g F
« P

S—>aSb|e and w = aabb v\—_\bq\—_‘qagg‘—_
o —PYL W4 i 5
B Q(A—U;/a 5:>CB;>/¥%TB
-_. @
y ol hene <) W 9yase
L(7CI\H (Lr___<\(ﬂ| > \>&R|3&
\ Eﬁaubg
aob B
g >P\SPJ)/3(\%_ 577 CB) At —3) aabLéL
}&~>£ 1 - AS \/
o A-— &
PR

R
{ (2 ¢) (s, L) (68 s=>pb C aM//'\—‘ﬁﬂ*'Bab)(S)(“Q\Olﬂ)l ?

AT
Eredas T

4

Undecidable Problems...

: :3 1.The Post Correspondence Problem(PCP)

8 . 2.Halting Problem of Turing Machine

'y b
okt

: 1.THE POST CORRESPONDENCE PROBLEM

- The Post Correspondence Problem (PCP) was first introduced by Emil
- " Post in 1946. Later, the problem was found to have many applications
S :; in the theory of formal languages.

.
q

"'l‘

<2 The problem over an alphabet 2 belongs to a class of yes/no
¢ ¥ problems and is stated as follows:

YW -){4_—)%\7 l_..\i\‘ <L) >

i & Consider the two lists x =(X1, X5 ... Xp), Y = (Y1.Y2,--.Yn) Of nonempty strings over an
~ & alphabet 2. The PCP is to determine whether or not there exist Iy, i,...I,
. & where 1< |y =n, suchthat Xx....X, = Vig-----Yim

Note: if there exists a solution to PCP, there may exist infinitely many solutions.

https://www.youtube.com/watch?v=VZNN10Goqr8

https://www.youtube.com/watch?v=VZNN1OGoqr8

The Post Correspondence Problem

The Post correspondence problem is
an undecidable decision problem that
was introduced by Emil Post in 1946

ll: 3
By
T
.. =
. (=)
R
§ LB
1. ..
’
!

Emil Leon Post

The Post Correspondence Problem

Dominos:

D @ & ©

I’ A A I.U:(
(A \l A

kS

We need to find a sequence of dominos such that the top and bottom strings

’ (

L [] .
BTV

R
ﬂﬂ"l

are the same

.-

ABCAAABC
ABCAAABC

A ;
~ Practice Problems:

jg{c(lgl \ao\lﬂlalj ’”\\j";(‘sb\oy‘oa}q\ 0

1. Does the PCP with two lists x = (b, bab?, ba) and y = (b?, ba, a)

have a solution?

; Wi
-
e
e

@)

111

<,

10

2. Find at least two solutions to PCP defined by the dominoes:

&

10111

10

= 2. HALTING PROBLEM OF TURING MACHINE

(D
.-- " . . . |
.- Given a TM M and an input string w with the initial configuration gyw,
B ... after some(or all) computations, does the machine M halts on w ?
i‘; Alan Turing ,in 1990 proved that the halting problem of TM on input w is
i & undecidale.

L. A reduction Techniques may be used to prove the undecidabilty of halting
problem of a TM. Using this techniques , a problem A is reducible to
% = problem B if a solution to the problem B can be used to solve the

W problem A.
' L B

{iiThus,

& _if Ais reducible to B and B is decidable . then A is decidable.
¢ -if Ais reducible to B & B is undecidable, then Ais undecidable.

hﬂ-;"'

=. Block diagram of a Halting machine: < M \,\)7
".#:’ |
% 3 Y
Input —> Yes (HM halts on input w)
Machine
Q/fv\\ — No (HM does not halt on input w)

- B Key point: Turing machine can be encoded as string, and other Turing
- B machines can read those strings to perform “simulations”

“Theorem: The Language HALT,, ={ <M ,w> | the TM M halts on input w }
s undecidable.
Proof: We assume that HALT,, is decidable and get a contradiction. Let M,, be the

TM such that T(M,) = HALT,, & let M, halts eventually on all <M,w>. We construct a
TM M, as follows:

¢ 1) For M,, <M,w> is an input.
¢ 2) The TM M, acts on <M, w>
=2 3) if M, rejects <M,w> then M, rejects <M,w>
: 4) If M, accepts <M,w>, simulate the TM M on the input string w until M halts.
% 5) If M has accepted w, M, accepts <M,w>; otherwise M, rejects <M,w>.
A% When M, accepts <M,w> (in step 4), the TM M halts on w.
= In this case either accepting state g or a state g’ such that 8(q’,a) undefined on ‘a’ is
reached.
In the first case (the first alternative of step 5) M, accepts <M,w>.
In the second case (the second alternative of step 5) M, rejects <M,w>.
It follows from the definition of M,, that M,, halts eventually.
But, T(M,) = { <M,w> | The TM accepts w} is undecidable which is a contradiction.
Therefore, the Language HALT+,, is undecidable.

Important Questions on: Module-5

Define an algorithm and Explain with example.
Write short notes on: i) Recursively enumerable Language ii) Decidable Language.
If Appa = { < B, w > | B is DFA that accept w }, then show that Ay, IS decidable.

What is Post Correspondence problem? Explain with example.

a k~ WD F

.[What IS Halting problem of Turing Machine?

.-"- -:. -J
8§ 6. Show that HALTy,, = { <M ,w> | the TM M halts on input w } is undecidable.

7. Define the following: i) Quantum Computers ii) Class P and NP problems

% M 8. Explain Church -Turing Thesis.

Topic: Complexity

When a problem/language is decidable, it simply means that the problem is
computationally solvable in principle.

It may not be solvable in practice in the sense that it may require enormous
amount of computation time and memory.

P-stands for polynomial time: this class of problems that can be solved by a
deterministic algorithm in a polynomial time.

VT
NP-stands for Non-deterministic problem: this class of problems that can be
solved by a nondeterministic algorithm in a polynomial time.

\A

—_—

1. GROWTH RATE OF FUNCTIONS @/ -1, o

A Comparison of Growth-Rate Functions (cont.)

(b)
X/}\\ v

A

&y AL T3
o()0 oy

S0

Value of growth-rate function

25

-
-
-
-

A
= when we have two algorithms for the same problem, we may require a
comparison between the running time of these two algorithms. ()

Definition: Let f,g: N - R* (R* being the set of all positive real

numbers). We say that f(n) = O(g(n)) if there exist positive integers C and
N, such that f(n) <Cg(n) foralln>N,

In this case we say fis of the order of g (or f is 'big oh' of g)

0 b \\
5 J 7 J
Ex.: Let f(n) :‘+ 5n2 +7n +3. Prove that f(n) = O(n3)

In order to prove that f(n) = O(n3), Take C=5 & N, = 10.

|

@ & Then f(nN) =4n®+5n2+7n +3 < 5n3forn=10. :
: =]
B 5.4 143 |

Then, f(n) = O(n3) ny = 0"’ . (L“L WL‘L f%\ f

, T <,

J00y= ¥+ 54 =\ oM]

< BY\B LV»},EL WUV\] Yy CY\Sé ij\

S—Ly\\ﬁ (_—5('/1\ 5 SV\ N Q(4/‘\10 : ,\,_l—_Y\\ - O (V\FL\//

o VST
= ExIf p(n) = a.nk + k-

] k a, N 1+a.nl i
Then p(n) = O(n¥) : N* + 3, with 8, >0.

= TL16 94 .XU»/\M/\(\}\:
N < |
P(w —L_f‘q@n ay Mo e T a

(e S UJVJHV\? W\ AN

EL&LL’\ v 0
o Pt T2V le” VP

Sa \
|PU\\ k — k q](\\(\K 4 (AK#\V\K”\Jr o _],Q‘Y\Jr t&)\
".'f.': g — v\k (i\llkwj%-)&1 b JY—\E 4’\/&01\)
: l = v\\é(C) N e
¥ L,.DIAQ(L E_i K

< C Y\ /

-

T Pln <NL§(Hod M YN, mmr jff\\
\ =~ V\\ /e - \ U<5[W) O(HK)

v D

< Ex. Obtain a time complexity of a TM which accepts L ={a"b" | n = 1}
3 - > P |uce
! Solution: —> MotV

.- Stepl: Consist of going through the input string a"o" forward and o= GodbLL

backward and replacing leftmost ‘a’ by x & the leftmost ‘b’ by y.

\VY ' ¢ : (19 W= ZW =
So, we require at most 2n moves to match ‘a’ with a ‘b’. n- b
1 -

(i.e. Total number of moves = 2n) | -{--}ilaﬁc\:\ Jlef &
) 3 %6 1%

Step2: The stepl is to be repeated for n times for each ‘9’.
Hence the number of moves for accepting a"b" is at most (2n)(n)

For strings not of the form a"b" , TM halts with less than 2n? moves.

Hence , the time (running time) complexity is given by O(n?).
i.e. T(M) = O(n?
W= o | C=3, 3lny=n"
(™) 2. ()

Ty = olnd

#2. The Class P & NP Languages b

_ _ _ T Y o)
5 In this section we introduce the classes P and NP of languages. MV

Ef :3 Definition: A Turing machine M is said to be of time complexity T(n) if the
_ followmg holds: Given an input w of length n. M halts after making at most T(n)
¥ 5 moves.

Note: In this case. M eventually halts. Recall that the standard TM is called a deterministic
o BATM. g

4 & Definition: A language L is in class P if there exists some polynomial T(n) such

T
.
-
1 g

D - QNS
< Obtain a time complexity of a TM which accepts L = {1"2"3" | n = 1}
S ~ M z2

= D™ oy el _
5! Solution: o H{\M\) 3?|53\Qfé

Stepl: Consist of going through the input string 1"2"3" forward and Xy T
backward and replacing leftmost ‘1’ by x , the leftmost ‘2’ by y and =0
leftmost “3” by z . So, we require at most 4n moves. (Q@fm\

| (.e. Total number of moves = 4n)

Step2: The stepl is to be repeated for 1:1 times for each “1°.

Hence the number of moves for accepting 1"2"3" is at most (4n)(n)

For strings not of the form 1"2"3" , TM halts with less than 4n? moves.
Hence, the time (running time) complexity is given by O(n?).
i.e. T(M) = O(n?) -

7 }mwd\jik\\fw‘«@oL FG'WV\W\‘«*U\W\
Definition: A language L is in class NP If there is a Non-Deterministic
TM M and a polynomial time complexity T(n) and M executes in at most T(n)

moves for every input w of length n.

WL T
-I"I"\.’F‘ - . ol :'1.-‘r

NT M\

4 © We have seen that a Deterministic TM M, simulating a Non-Deterministic TM

N

= & M exists. If T(n) is the complexity of M, then the time complexity of the
equivalent Deterministic ™ M, is: 200)
i 8 - (1T RRT % DM
¢ “ \ N T M A >O o
L &i @)Q

/\ '4 {S\”% D= D i

A m:%

J/\J J VW
AT DTM v}

.

165 Pagan
< 3. Church- -Turing Thesis (1930) "<'\

_ﬂ Church-Turing’s thesis Is stated as : Any ¢ effective computation” or “any
- algorithmic” procedure that can be carried out by a human being or a
5 team of human being or a computing machine can be carried out by

@ < Turing Machine. 1990, = Tire, the

In other words , there Is an effective procedure to solve a decision problem P if

& ' and only if there is a Turing Machine that answer YES on input w € P and NO
“ [oninputw ¢ P,

& The Church-Turing thesis predicts that it i1s able to construct models of
= B computations more powerful then the existing once.

B Thesis also states that we cannot go beyond Turing Machlnes or their

equivalent. Since there is no precise definition for “effective computatlon
& or “Algorithmic procedure” Church’s thesis is not a mathematically precise
¥ statement today.

= Any algorithmic process can be simulated efficiently by a Turing machine.

““But a challenge to the strong Church-Turing thesis arose from analog computation.
. Certain types of analog computers solved some problems efficiently whereas these
- problems had no efficient solution on a Turing machine. This led to the

; %modification of the Church thesis. 7 HVB E Gugatim Lol ofs
A O — C o sy LQPA]M\

Ve e
wransistors | Thhe compactmess of chip has
7 woococco | imereased the power of the

By

MOORE'S LAW

rensummiposessary” | 0000000 | COMPputer. The growth of
& Computer power is described by

564 m// | 53" |19 | Moore's law, which states that
y . 4 100,000 the Computer power will double
/ gx R for constant cost once im every 1.5
) N 10,
8008 DTN e years.

4004 &

- e il it ol i S s e=3 1000
1970 1975 1980 1985 1990 1995 2000

W
L J/»J>

& 4. Quantum Computer

Referee text book or internet for theoretical note of Quantum Computer...

