

Computer Organization Module3

Basic Structure of Computers

&

Machine Instructions and Programs

TOPIC: Basic Structure of Computers: Basic Operational Concepts, Bus Structures,

Performance –Processor Clock, Basic Performance Equation, Clock Rate, Performance

Measurement. Machine Instructions and Program: Memory Location and Addresses

Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly

Language, Basic Input and Output Operations, Stacks and Queues, Subroutines, Additional

Instructions, Encoding of Machine Instructions

1. BASIC OPERATIONAL CONCEPT:

The program to be executed is stored in memory. Instructions are accessed from memory to the

processor one by one and executed.

STEPS FOR INSTRUCTION EXECUTION

Consider the following instruction

Ex: 1 Add LOCA, R0

This instruction is in the form of the following instruction format

Opcode Source, Source/ Destination

Where Add is the operation code, LOCA is the Memory operand and R0 is Register operand

This instruction adds the contents of memory location LOCA with the contents of Register R0 and

the result is stored in R0 Register.

The symbolic representation of this instruction is

R0 [LOCA] + [R0]

The contents of memory location LOCA and Register R0 before and after the execution of this

instruction is as follows

Before instruction execution After instruction execution

LOCA = 23H LOCA = 23H

R0 = 22H R0 = 45H

The steps for instruction execution are as follows

1. Fetch the instruction from memory into the IR (instruction register in CPU).

2. Decode the instruction 1111000000 10011010

3. Access the first Operand

4. Access the second Operand

5. Perform the operation according to the Opcode (operation code).

6. Store the result into the Destination Memory location or Destination Register.

Computer Organization Module3

Ex:2 Add R1, R2, R3 (3 address instruction format)

This instruction is in the form of the following instruction format

Opcode, Source-1, Source-2, Destination

Where R1 is Source Operand-1, R2 is the Source Operand-2 and R3 is the Destination. This

instruction adds the contents of Register R1 with the contents of R2 and the result is placed in R3

Register.

The symbolic representation of this instruction is

R3 [R1] + [R2]

The contents of Registers R1,R2,R3 before and after the execution of this instruction is as follows.

Before instruction execution After instruction execution

R1 = 24H R1 = 24H

R2 = 34H R2 = 34H

R3 = 38H R3 = 58H

The steps for instruction execution is as follows

1. Fetch the instruction from memory into the IR.

2. Decode the instruction

3. Access the First Operand R1

4. Access the Second Operand R2

5. Perform the operation according to the Operation Code.

6. Store the result into the Destination Register R3.

CONNECTION BETWEEN MEMORY AND PROCESSOR

The connection between Memory and Processor is as shown in the figure.

The Processor consists of different types of registers.

1. MAR (Memory Address Register)

2. MDR (Memory Data Register)

3. Control Unit

4. PC (Program Counter)

5. General Purpose Registers

6. IR (Instruction Register)

7. ALU (Arithmetic and Logic Unit)

Computer Organization Module3

5000h

The functions of these registers are as follows

1. MAR

 It establishes communication between Memory and Processor

 It stores the address of the Memory Location as shown in the figure.

MAR
Memory

5000 23h

5001 43h

5002 78h

5003 65h

2. MDR

 It also establishes communication between Memory and the Processor.

 It stores the contents of the memory location (data or operand), written into or read from

memory as shown in the figure.

MDR
Memory

3. CONTROL UNIT

 It controls the data transfer operations between memory and the processor.

 It controls the data transfer operations between I/O and processor.

 It generates control signals for Memory and I/O devices.

23h 23h 5000

43h 5001

78h 5002

65h 5003

Computer Organization Module3

4. PC (PROGRAM COUNTER)

 It is a special purpose register used to hold the address of the next instruction to be

executed.

 The contents of PC are incremented by 1 or 2 or 4, during the execution of current

instruction.

 The contents of PC are incremented by 1 for 8 bit CPU, 2 for 16 bit CPU and for 4 for 32

bit CPU.

4. GENERAL PURPOSE REGISTER / REGISTER ARRAY

The structure of register file is as shown in the figure

R0

R1

R2

.

Rn-1

 It consists of set of registers.

 A register is defined as group of flip flops. Each flip flop is designed to store 1 bit of

data.

 It is a storage element.

 It is used to store the data temporarily during the execution of the program(eg: result).

 It can be used as a pointer to Memory.

 The Register size depends on the processing speed of the CPU

 EX: Register size = 8 bits for 8 bit CPU

5. IR (INSTRUCTION REGISTER

It holds the instruction to be executed. It notifies the control unit, which generates timing

signals that controls various operations in the execution of that instruction.

6. ALU (ARITHMETIC and LOGIC UNIT)

 It performs arithmetic and logical operations on given data.

Steps for fetch the instruction

PC contents are transferred to MAR

Read signal is sent to memory by control unit.

The instruction from memory location is sent to MDR.

The content of MDR is moved to IR.

[PC]  MAR Memory  MDR  IR

CU (read signal)

Computer Organization Module3

2. BUS STRUCTURE

Bus is defined as set of parallel wires used for data communication between different parts of

computer. Each wire carries 1 bit of data. There are 3 types of buses, namely

1. Address bus

2. Data bus and

3. Control bus1.

1. Address bus :

 It is unidirectional.

 The processor (CPU) sends the address of an I/O device or Memory device by means of

this bus.

2. Data bus

 It is a bidirectional bus.

 The CPU sends data from Memory to CPU and vice versa as well as from I/O to CPU

and vice versa by means of this bus.

3. Control bus:

 This bus carries control signals for Memory and I/O devices. It generates control signals

for Memory namely MEMRD and MEMWR and control signals for I/O devices namely IORD

and IOWR.

The structure of single bus organization is as shown in the figure.

 The I/O devices, Memory and CPU are connected to this bus is as shown in the figure.

 It establishes communication between two devices, at a time.

Features of Single bus organization are

 Less Expensive

 Flexible to connect I/O devices.

 Poor performance due to single bus.

There is a variation in the devices connected to this bus in terms of speed of operation.

Few devices like keyboard, are very slow. Devices like optical disk are faster. Memory and

processor are faster, but all these devices uses the same bus. Hence to provide the synchronization

Computer Organization Module3

between two devices, a buffer register is attached to each device. It holds the data temporarily

during the data transfer between two devices.

3. PERFORMANCE

Basic performance Equation

 The performance of a Computer System is based on hardware design of the processor and

the instruction set of the processors.

 To obtain high performance of computer system it is necessary to reduce the execution

time of the processor.

 Execution time: It is defined as total time required executing one complete program.

 The processing time of a program includes time taken to read inputs, display outputs,

system services, execution time etc.

 The performance of the processor is inversely proportional to execution time of the

processor.

More performance = Less Execution time.

Less Performance = More Execution time.

The Performance of the Computer System is based on the following factors

1. Cache Memory

2. Processor clock

3. Basic Performance Equation

4. Instructions

5. Compiler

CACHE MEMORY: It is defined as a fast access memory located in between CPU and

Memory. It is part of the processor as shown in the fig

The processor needs more time to read the data and instructions from main memory

because main memory is away from the processor as shown in the figure. Hence it slowdown the

performance of the system.

The processor needs less time to read the data and instructions from Cache Memory

because it is part of the processor. Hence it improves the performance of the system.

Computer Organization Module3

PROCESSOR CLOCK: The processor circuits are controlled by timing signals called as Clock.

It defines constant time intervals and are called as Clock Cycles. To execute one instruction there

are 3 basic steps namely

1. Fetch

2. Decode

3. Execute.

The processor uses one clock cycle to perform one operation as shown in the figure

Clock Cycle → T1 T2 T3

Instruction → Fetch Decode Execute

The performance of the processor depends on the length of the clock cycle. To obtain high

performance reduce the length of the clock cycle. Let „ P ‟ be the number of clock cycles generated

by the Processor and „ R „ be the Clock rate .

The Clock rate is inversely proportional to the number of clock cycles.

i.e R = 1/P.

Cycles/second is measured in Hertz (Hz). Eg: 500MHz, 1.25GHz.

Two ways to increase the clock rate –

 Improve the IC technology by making the logical circuit work faster, so that the time taken

for the basic steps reduces.

 Reduce the clock period, P.

BASIC PERFORMANCE EQUATION

Let „ T „ be total time required to execute the program.

Let „N „ be the number of instructions contained in the program.

Let „ S „ be the average number of steps required to execute one instruction.

Let „ R‟ be number of clock cycles per second generated by the processor to execute one

program.

Processor Execution Time is given by

T = N * S / R

This equation is called as Basic Performance Equation.

For the programmer the value of T is important. To obtain high performance it is necessary to

reduce the values of N & S and increase the value of R

Performance of a computer can also be measured by using benchmark programs.

SPEC (System Performance Evaluation Corporation) is an non-profitable organization, that

measures performance of computer using SPEC rating. The organization publishes the application

programs and also time taken to execute these programs in standard systems.

𝑆𝑃𝐸𝐶 =
𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟

𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑢𝑛𝑑𝑒𝑟 𝑡𝑒𝑠𝑡

Computer Organization Module3

DIFFERENCES MULTIPROCESSOR AND MULTICOMPUTER

MULTIPROCESSOR MULTICOMPUTER

1. Interconnection of two or more

processors by means of system bus.

Interconnection of two or more computers

by means of cables.

2. It uses common memory to hold the data

and instructions.

It has its own memory to store data and

instructions.

3. Complexity in hardware design. Not much complexity in hardware design.

4. Difficult to program for multiprocessor

system.

Easy to program for multiprocessor system

4. MEMORY LOCATIONS AND ADDRESSES

1. Memory is a storage device. It is used to store character operands, data operands and

instructions.

2. It consists of number of semiconductor cells and each cell holds 1 bit of information. A

group of 8 bits is called as byte and a group of 16 or 32 or 64 bits is called as word.

World length = 16 for 16 bit CPU and World length = 32 for 32 bit CPU. Word length is defined

as number of bits in a word.

 Memory is organized in terms of bytes or words.

 The organization of memory for 32 bit processor is as shown in the fig.

The contents of memory location can be accessed for read and write operation. The memory is

accessed either by specifying address of the memory location or by name of the memory location.

Computer Organization Module3

 Address space : It is defined as number of bytes accessible to CPU and it depends on the

number of address lines.

5. BYTE ADDRESSABILITY
Each byte of the memory are addressed, this addressing used in most computers are called byte

addressability. Hence Byte Addressability is the process of assignment of address to successive

bytes of the memory. The successive bytes have the addresses 1, 2, 3, 4………….2
n
-1. The

memory is accessed in words.

In a 32 bit machine, each word is 32 bit and the successive addresses are 0,4,8,12,… and

so on.

Address 32 – bit word

0000 0
th

 byte 1
st
 byte 2

nd
 byte 3

rd
 byte

0004 4
th

 byte 5
th

 byte 6
th

 byte 7
th

 byte

0008 8
th

 byte 9
th

 byte 10
th

 byte 11
th

 byte

0012 12
th

 byte 13
th

 byte 14
th

 byte 15
th

 byte

….. ….. ….. ….. …..

n-3 n-3
th

 byte n-2
th

 byte n-1
th

 byte n
th

 byte

BIG ENDIAN and LITTLE ENDIAN ASSIGNMENT

Two ways in which byte addresses can be assigned in a word.

Or

Two ways in which a word is stored in memory.

1. Big endian

2. Little endian

BIG ENDIAN ASSIGNMENT

In this technique lower byte of data is assigned to higher address of the memory and higher

byte of data is assigned to lower address of the memory.

Computer Organization Module3

The structure of memory to represent 32 bit number for big endian assignment is as shown in the

above figure.

LITTLE ENDIAN ASSIGNMENT

In this technique lower byte of data is assigned to lower address of the memory and higher byte

of data is assigned to higher address of the memory.

The structure of memory to represent 32 bit number for little endian assignment is as shown in

the fig.

Eg – store a word “JOHNSENA” in memory starting from word 1000, using Big Endian

and Little endian.

Bigendian -

1000 J O H N

 1000 1001 1002 1003

1004 S E N A

 1004 1005 1006 1007

Little endian -

1000 N H O J

 1000 1001 1002 1003

1004 A N E S

 1004 1005 1006 1007

WORD ALLIGNMENT

Word is the group of bytes in memory. Number of bits in a word is the word length.

Eg – 32-bit word length, 64-bit word length etc.

The word locations of memory are aligned, if they begin with the address, which is multiple of

number of bytes in a word.

Computer Organization Module3

4000 34H

4002 65H

4004 86H

4006 93H

4008 45H

4000 34H

4004 65H

4008 86H

4012 93H

4016 45H

4000 34H

4008 65H

4016 86H

4024 93H

4032 45H

The structure of memory for 16 bit CPU, 32 bit CPU and 64 bit CPU are as shown in the figures

1,2 and 3 respectively

For 16 bit CPU For 32 bit CPU For 64 bit CPU

(Here, no. of bytes of a

word is 2, and the

address of word is in

multiples of 2)

(Here, no. of bytes of a

word is 4, and the

address of word is in

multiples of 4)

(Here, no. of bytes of a

word is 8, and the

address of word is in

multiples of 8)

ACCESSING CHARACTERS AND NUMBERS

The character occupies 1 byte of memory and hence byte address for memory.

The numbers occupies 2 bytes of memory and hence word address for numbers.

6. MEMORY OPERATION
Both program instructions and operands are in memory.

To execute an instruction, each instruction has to be read from memory and after execution the

results must be written to memory.

There are two types of memory operations namely 1. Memory read and 2. Memory write

Memory read operation [Load/ Read / Fetch]

Memory write operation [Store/ write]

1. MEMORY READ OPERATION:

 It is the process of transferring of 1 word of data from memory into Accumulator (GPR).

 It is also called as Memory fetch operation.

 The Memory read operation can be implemented by means of LOAD instruction.

 The LOAD instruction transfers 1 word of data (1 word = 32 bits) from Memory into the

Accumulator as shown in the fig.

Memory(32 bits)
Accumulator

32 bits

5000

5004

5008

5012

5016

5020

Computer Organization Module3

Steps for Memory Read Operation

(1) The processor loads MAR (Memory Address Register) with the address of the memory

location.

(2) The Control unit of processor issues memory read control signal to enable the memory

component for read operation.

(3) The processor reads the data from memory into the MDR (Memory Data Register) by means

of bi-directional data bus.

[MAR]  Memory  MDR

2. MEMORY WRITE OPERATION

 It is the process of transferring the 1 word of data from Accumulator into the Memory.

 The Memory write operation can be implemented by means of STORE instruction.

The STORE instruction transfers 1 word of data from Accumulator into the Memory

location as shown in the fig.

Accumulator
Memory (32 bits)

32 bits

Steps for Memory Write Operation

 The processor loads MAR with the address of the Memory location.

 The processor loads MDR with the data to be stored in Memory location.

 The Control Unit issues the Memory Write control signal.

 The processor transfers 1 word of data from MDR to Memory location by means of bi-

directional data bus.

5000

5004

5008

5012

5016

5020

Computer Organization Module3

7. COMPUTER OPERATIONS (OR) INSTRUCTIONS AND

INSTRUCTION EXECUTION
The Computer is designed to perform 4 types of operations, namely

 Data transfer operations

 ALU Operations

 Program sequencing and control.

 I/O Operations.

1. Data Transfer Operations

a) Data transfer between two registers.

Format: Opcode Source1 , Destination

The processor uses MOV instruction to perform data transfer operation between two registers

The mathematical representation of this instruction is R1 → R2.

Ex : MOV R1 , R2 : R1 and R2 are the registers.

Where MOV is the operation code, R1 is the source operand and R2 is the destination operand.

This instruction transfers the contents of R1 to R2.

EX: Before the execution of MOV R1,R2, the contents of R1 and R2 are as follows

R1 = 34h and R2 = 65h

After the execution of MOV R1, R2, the contents of R1 and R2 are as follows

R1 = 34H and R2 = 34H

b) Data transfer from memory to register

The processor uses LOAD instruction to perform data transfer operation from memory to

register. The mathematical representation of this instruction is

ACC ←[LOCA]. Where ACC is the Accumulator.

Format : opcode operand

Ex: LOAD LOCA

For this instruction Memory Location is the source and Accumulator is the destination.

c) Data transfer from Accumulator register to memory

The processor uses STORE instruction to perform data transfer operation from Accumulator

register to memory location. The mathematical representation of this instruction is

LOCA ←[ACC]. Where, ACC is the Accumulator.

Format: opcode operand

Ex: STORE LOCA

For this instruction accumulator is the source and memory location is the destination.

2. ALU Operations

The instructions are designed to perform arithmetic operations such as Addition,

Subtraction, Multiplication and Division as well as logical operations such as AND, OR

and NOT operations.

Computer Organization Module3

Ex1: ADD R0, R1

The mathematical representation of this instruction is as follows:

R1← [R0] + [R1]; Adds the content of R0 with the content of R1 and result is placed in R1.

Ex2: SUB R0, R1

The mathematical representation of this instruction is as follows:

R1← [R0] - [R1] ; Subtracts the content of R0 from the content of R1 and result is placed

in R1.

EX3: AND R0, R1 ; It Logically multiplies the content of R0 with the content of R1 and

result is stored in R1. (R1= R0 AND R1)

3. I/O Operations: The instructions are designed to perform INPUT and OUTPUT operations.

The processor uses MOV instruction to perform I/O operations.

The input Device consists of one temporary register called as DATAIN register and

output register consists of one temporary register called as DATAOUT register.

a) Input Operation: It is a process of transferring one WORD of data from DATA IN

register to processor register.

Ex: MOV DATAIN, R0

The mathematical representation of this instruction is as follows,

R0← [DATAIN]

b) Output Operation: It is a process of transferring one WORD of data from processor

register to DATAOUT register.

Ex: MOV R0, DATAOUT

The mathematical representation of this instruction is as follows,

[R0]→ DATAOUT

REGISTER TRANSFER NOTATION

There are 3 locations to store the operands during the execution of the program namely

1. Register 2. Memory location 3. I/O Port. Location is the storage space used to store the data.

 The instructions are designed to transfer data from one location to another location.

Eg 1 - Consider the first statement to transfer data from one location to another location

 “ Transfer the contents of Memory location whose symbolic name is given by AMOUNT into

processor register R0.”

 The mathematical representation of this statement is given by

R0 ← [AMOUNT]

Eg 2 -Consider the second statement to add data between two registers

 “Add the contents of R0 with the contents of R1 and result is stored in R2”

 The mathematical representation of this statement is given by

R2 ←[R0] + [R1].

Such a notation is called as “Register Transfer Notation”.

It uses two symbols

1. A pair of square brackets [] to indicate the contents of Memory location and

2. ← to indicate the data transfer operation.

Computer Organization Module3

ASSEMBLY LANGUAGE NOTATION

Consider the first statement to transfer data from one location to another location

“Transfer the contents of Memory location whose symbolic name is given by AMOUNT into

processor register R0.”

The assembly language notation of this statement is given by

MOV AMOUNT, R0

Opcode Source Destination

This instruction transfers 1 word of data from Memory location whose symbolic name is given by

AMOUNT into the processor register R0.

The mathematical representation of this statement is given by

R0 ← [AMOUNT]

Consider the second statement to add data between two registers

“Add the contents of R0 with the contents of R1 and result is stored in R2”

The assembly language notation of this statement is given by

ADD R0 , R1, R2

Opcode source1, Source2, Destination

This instruction adds the contents of R0 with the contents of R1 and result is stored in R2.

 The mathematical representation of this statement is given by

R2 ←[R0] + [R1].

Such a notations are called as “Assembly Language Notations”

BASIC INSTRUCTION TYPES

There are 3 types of basic instructions namely

1. Three address instruction format

2. Two address instruction format

3. One address instruction format

Consider the arithmetic expression Z = A + B, Where A,B,Z are the Memory locations.

Steps for evaluation

1. Access the first memory operand whose symbolic name is given by A.

2. Access the second memory operand whose symbolic name is given by B.

3. Perform the addition operation between two memory operands.

4. Store the result into the 3
rd

 memory location Z.

5. The mathematical representation is Z ←[A] + [B].

a) Three address instruction format : Its format is as follows

opcode Source-1 Source-2 destination

Destination ← [source-1] + [source-2]

Ex: ADD A, B, Z

Z ← [A] + [B]

Computer Organization Module3

a) Two address instruction format : Its format is as follows

opcode Source Source/destination

Destination ← [source] + [destination]

The sequence of two address m/c instructions to evaluate the arithmetic expression

Z ← A + B are as follows

MOV A, R0

MOV B, R1

ADD R0, R1

MOV R1, Z

b) One address instruction format : Its format is as follows

opcode operand

Ex1: LOAD B

This instruction copies the contents of memory location whose symbolic name is given

by „B‟ into the Accumulator as shown in the figure.

The mathematical representation of this instruction is as follows

ACC ← [B]

Accumulator Memory

Ex2: STORE B

This instruction copies the contents of Accumulator into memory location whose

symbolic name is given by „B‟ as shown in the figure. The mathematical representation is as

follows

B ← [ACC].

Accumulator

Memory

Ex3: ADD B

 This instruction adds the contents of Accumulator with the contents of Memory

location „B‟ and result is stored in Accumulator.

 The mathematical representation of this instruction is as follows

ACC ←[ACC]+ [B]

Computer Organization Module3

STRIGHT LINE SEQUENCING AND INSTRUCTION EXECUTION

Consider the arithmetic expression

C = A+B , Where A,B,C are the memory operands.

The mathematical representation of this instruction is

C = [A] + [B].

The sequence of instructions using two address instruction format are as follows

MOV A, R0

ADD B, R0

MOV R0, C

Such a program is called as 3 instruction program.

NOTE: The size of each instruction is 32 bits.

 The 3 instruction program is stored in the successive memory locations of the

processor is as shown in the fig.

 The system bus consists of uni-directional address bus,bi-directional data bus and control bus

“It is the process of accessing the 1
st
 instruction from memory whose address is stored in program

counter into Instruction Register (IR) by means of bi-directional data bus and at the same time

after instruction access the contents of PC are incremented by 4 in order to access the next

instruction. Such a process is called as “Straight Line Sequencing”.

INSTRUCTION EXECUTION

There are 4 steps for instruction execution

1 Fetch the instruction from memory into the Instruction Register (IR) whose address

is stored in PC.

IR ← [[PC]]

Computer Organization Module3

2 Decode the instruction.

3 Perform the operation according to the opcode of an instruction

4 Load the result into the destination.

5 During this process, Increment the contents of PC to point to next instruction (In

32 bit machine increment by 4 address)

PC ← [PC] + 4.

6 The next instruction is fetched, from the address pointed by PC.

BRANCHING

Suppose a list of „N‟ numbers have to be added. Instead of adding one after the other, the

add statement can be put in a loop. The loop is a straight-line of instructions executed as many

times as needed.

The „N‟ value is copied to R1 and R1 is decremented by 1 each time in loop. In the loop find the

value of next elemet and add it with Ro.

In conditional branch instruction, the loop continues by coming out of sequence only if

the condition is true. Here the PC value is set to „LLOP‟ if the condition is true.

Branch > 0 LOOP // if >0 go to LOOP

The PC value is set to LOOP, if the previous statement value is >0 ie. after decrementing R1 value

is greater than 0.

Computer Organization Module3

If R1 value is not greater than 0, the PC value is incremented in a mormal sequential way and the

next instruction is executed.

CONDITION CODE BITS

 The processor consists of series of flip-flops to store the status information after ALU

operation.

 It keeps track of the results of various operations, for subsequent usage.

 The series of flip-flip-flops used to store the status and control information of the processor

is called as “Condition Code Register”. It defines 4 flags. The format of condition code register

is as follows.

C V Z N

1 N (NEGATIVE) Flag:

It is designed to differentiate between positive and negative result.

It is set 1 if the result is negative, and set to 0 if result is positive.

2 Z (ZERO) Flag:

It is set to 1 when the result of an ALU operation is found to zero, otherwise it is cleared.

3 V (OVER FLOW) Flag:

In case of 2
s
 Complement number system n-bit number is capable of representing a

range of numbers and is given by -2
n-1

 to +2
n-1.

 . The Over-Flow flag is set to 1 if the result

is found to be out of this range.

4 C (CARRY) Flag :

This flag is set to 1 if there is a carry from addition or borrow from subtraction,

otherwise it is cleared.

8. Addressing Modes

The various formats of representing operand in an instruction or location of an operand is called

as “Addressing Mode”. The different types of Addressing Modes are

a) Register Addressing

b) Direct Addressing

c) Immediate Addressing

d) Indirect Addressing

e) Index Addressing

f) Relative Addressing

g) Auto Increment Addressing

h) Auto Decrement Addressing

Computer Organization Module3

a. REGISTER ADDRESSING:

In this mode operands are stored in the registers of CPU. The name of the register is directly

specified in the instruction.

Ex: MOVE R1,R2 Where R1 and R2 are the Source and Destination registers respectively. This

instruction transfers 32 bits of data from R1 register

into R2 register. This instruction does not refer

memory for operands. The operands are directly

available in the registers.

b. DIRECT ADDRESSING

It is also called as Absolute Addressing Mode. In this addressing mode operands are stored in the

memory locations. The name of the memory location is directly specified in the instruction.

Ex: MOVE LOCA, R1 : Where LOCA is the memory location and R1 is the Register.

This instruction transfers 32 bits of data from memory

location LOCA into the General Purpose Register R1.

c. IMMEDIATE ADDRESSING

In this Addressing Mode operands are directly specified in the instruction. The source field is used

to represent the operands. The operands are represented by # (hash) sign.

Ex: MOVE #23, R0

Computer Organization Module3

d. INDIRECT ADDRESSING

In this Addressing Mode effective address of an operand is stored in the memory location or

General Purpose Register.

[Effective address (EA) – the actual memory address of the operand]

The memory locations or GPRs are used as the memory pointers.

Memory pointer: It stores the address of the memory location.

There are two types Indirect Addressing

i) Indirect through GPRs

ii) Indirect through memory location

i) Indirect Addressing Mode through GPRs

In this Addressing Mode the effective address of an operand is stored in the one of the General

Purpose Register of the CPU.

Ex: ADD (R1), R0 ; Where R1 and R0 are GPRs

(R1) – R1 stores the address of a location where operand value is present.

This instruction adds the data from the memory location whose address is stored in R1, with the

contents of R0 Register and the result is stored in R0 register as shown in the fig.

R0 [[R1]] + R0

The diagrammatic representation of this addressing mode is as shown in the fig.

Computer Organization Module3

ii) Indirect Addressing Mode through Memory Location.

In this Addressing Mode, effective address of an operand is stored in the memory location.

Ex: ADD (A), R0

This instruction adds the data from the memory location, whose address is stored in „A‟ memory

location with the contents of R0 and result is stored in R0 register.

R0 [[A]] + R0

The diagrammatic representation of this addressing mode is as shown in the fig.

e. INDEX ADDRESSING MODE

In this addressing mode, the effective address of an operand is computed by adding constant

value with the contents of Index Register. Any one of the General Purpose Register namely R0 to

Rn-1 can be used as the Index Register. The constant value is directly specified in the instruction.

The symbolic representations of this mode are as follows

1. X (Ri) where X is the Constant value and Rj is the GPR.

It can be represented as

Effective Address (EA) of an operand = X + (Ri)

Eg: Add 5(R2) , R3

Effective Address(EA) of first operand = 5 + [R2].

2. (Ri , RJ) Where Ri and Rj are the General Purpose Registers used to store addresses of an

operand and constant value respectively. It can be represented as

The EA of an operand is given by EA = (Ri) + (Rj)

Computer Organization Module3

3. X (Ri , Rj) Where X is the constant value and RI and RJ are the General Purpose Registers

used to store the addresses of the operands.It can be represented as

The EA of an operand is given by

EA = (Ri) + (Rj) + X

Eg : Add 5(R1)(R2) , R3

EA of first operand is [R1]+[R2]+5

There are two types of Index Addressing Modes

i) Offset is given as constant.

ii) Offset is in Index Register.

Note : Offset : It is the difference between the starting effective address of the memory location

and the effective address of the operand fetched from memory.

i) Offset is given as constant

Ex: ADD 20(R1), R2

The EA of an operand is given by

EA = 20 + [R1]

This instruction adds the contents of memory location whose EA is the sum of contents of R1

with 20 and with the contents of R2 and result is placed in R2 register. The diagrammatic

representation of this mode is as shown in the fig.

Computer Organization Module3

ii) Offset is in Index Register

Ex: ADD 1000(R1) , R2 R1 holds the offset address of an operand.

The EA of an operand is given by

EA = 1000 + [R1]

This instruction adds the data from the memory location whose address is given by [1000 +

[R1] with the contents of R2 and result is placed in R2 register.

The diagrammatic representation of this mode is as shown in the fig.

f. RELATIVE ADDRESSING MODE:

In this Addressing Mode EA of an operand is computed by the Index Addressing Mode. This

Addressing Mode uses PC (Program Counter) to store the EA of the next instruction instead of

GPR.

The symbolic representation of this mode is X(PC), where X is the offset value and PC is the

Program Counter to store the address of the next instruction to be executed.

EA of operand = X + (PC).

This Addressing Mode is useful to calculate the EA of the target memory location.

Computer Organization Module3

g. AUTO INCREMENT ADDRESSING MODE

In this Addressing Mode , EA of an operand is stored in the one of the GPRs of the CPU. This

Addressing Mode increment the contents of register, to point to next memory locations after

operand access.

In 32- bit machine, it points to the next memory location, by adding 4 to current location value.

The symbolic representation is

(RI)+ Where Ri is the one of the GPR.

Ex: MOVE (R1)+ , R2

This instruction transfer‟s data from the memory location whose address is stored in R1 into R2

register and then it increments the contents of R1 to point to next address.

h. AUTO DECREMENT ADDRESSING MODE

In this Addressing Mode , EA of an operand is stored in the one of the GPRs of the CPU. This

Addressing Mode decrements the contents of register, to point to previous memory locations after

operand access.

In 32- bit machine, it points to the previous memory location, by subtracting 4 from current

location value.

The symbolic representation is

-(RI) Where Ri is the one of the GPR.

Ex: MOVE - (R1) , R2

This instruction first decrements the contents of R1 by 4 memory locations and then transfer‟s data

of that location to destination register.

Digital Design and Computer Organization (BSC302) Module-4

 Page 1

MODULE 4

INPUT/OUTPUT ORGANIZATION

There are a number of input/output (I/O) devices, which can be connected to a computer. The input may

be from a keyboard, a sensor, switch, mouse etc. Similarly, output may be a speaker, monitor, printer, a

digital display etc.

These variety of I/O devices exchange information in varied format, having different word length,

transfer speed is different, but are connected to the same system and exchange information with the

same computer. Computer must be capable of handling these wide variety of devices.

ACCESSING I/O-DEVICES
A single bus-structure can be used for connecting I/O-devices to a computer. The simple arrangement

of connecting set of I/O devices to memory and processor by means of system bus is as shown in the

figure. Such an arrangement is called as Single Bus Organization.

 The single bus organization consists of

o Memory

o Processor

o System bus

o I/O device

 The system bus consists of 3 types of buses:

Digital Design and Computer Organization (BSC302) Module-4

 Page 2

o Address bus (Unidirectional)

o Data bus (Bidirectional)

o Control bus (Bidirectional)

 The system bus enables all the devices connected to it to involve in the data transfer operation.

 The system bus establishes data communication between I/O device and processor.

 Each I/O device is assigned a unique set of address.

 When processor places an address on address-lines, the intended-device responds to the

command.

 The processor requests either a read or write-operation.

 The requested data are transferred over the data-lines

Steps for input operation:

 The address bus of system bus holds the address of the input device.

 The control unit of CPU generates IORD Control signal.

 When this control signal is activated the processor reads the data from the input device

(DATAIN) into the CPU register.

Steps for output operation:

 The address bus of system bus holds the address of the output device.

 The control unit of CPU generates IOWR control signal.

 When this control signal is enabled CPU transfers the data from processor register to output

device(DATAOUT)

There are 2 schemes available to connect I/O devices to CPU

1. Memory mapped I/O:

 In this technique, both memory and I/O devices can share the common memory to store the data,

the I/O instructions are mapped to any memory location.

 All memory related instructions are used for data transfer between I/O and processor.

 In case of memory mapped I/O input operation can be implemented as,

MOVE DATAIN , R0

Source destination

Digital Design and Computer Organization (BSC302) Module-4

 Page 3

This instruction sends the contents of location DATAIN to register R0.

 Similarly output can be implemented as,

MOVE R0, DATAOUT

Source destination

The data is written from R0 to DATAOUT location (address of output buffer)

2. I/O Mapped I/O:

 In this technique, a separate address space is allocated for I/O devices. Address space for

program and I/O devices are different.

 Hence two sets of instruction are used for data transfer.

 One set for memory operations and another set for I/O operations.

 Whole address space is available for the program.

 Eg – IN AL, DX

Digital Design and Computer Organization (BSC302) Module-4

 Page 4

I/O INTERFACE

The hardware arrangement of connecting i/p device to the system bus is as shown in the fig.

This hardware arrangement is called as I/O interface. The I/O interface consists of 3 functional devices

namely:

1) Address Decoder:

o Its function is to decode the address, in-order to recognize the input device whose address is
available on the unidirectional address bus.

o The recognition of input device is done first, and then the control and data registers becomes
active.

o The unidirectional address bus of system bus is connected to input of the address decoder as
shown in figure

2) Control Circuit:

o The control bus of system bus is connected to control circuit as shown in the fig.

o The processor sends commands to the I/O system through the control bus.

o It controls the read write operations with respect to I/O device.

3) Status & Data register:

o It specifies type of operation (either read or write operation) to be performed on I/O device. It
specifies the position of operation.

4) Data Register:

Digital Design and Computer Organization (BSC302) Module-4

 Page 5

DATAOUT Buffer

DATAIN Buffer

o The data bus carries the data from the I/O devices to or from the processor. The data bus is
connected to the data/ status register.

o The data register stores the data, read from input device or the data, to be written into output
device. There are 2 types:

DATAIN - Input-buffer associated with keyboard.

DATAOUT -Output data buffer of a display/printer.

Data buffering is an essential task of an I/O interface. Data transfer rates of processor and

memory are high, when compared with the I/O devices, hence the data are buffered at the I/O

interface circuit and then forwarded to output device, or forwarded to processor in case of input

devices.

Input Device Processor

Processor Output Device

Input & Output registers –

Various registers in keyboard and display devices -

DATAIN register is a part of input device. It is used to store the ASCII characters read from

keyboard.

Digital Design and Computer Organization (BSC302) Module-4

 Page 6

DATAOUT register is a part of output device. It is used to store the ASCII characters to be

displayed on the output device.

STATUS register stores the status of working of I/O devices –

 SIN flag – This flag is set to 1, when DATAIN buffer contains the data from keyboard.

The flag is set to 0, after the data is passed from DATAIN buffer to the processor.

 SOUT flag – This flag is set to 1, when DATAOUT buffer is empty and the data can be

added to it by processor. The flag is set to 0, when DATAOUT buffer has the data to be

displayed.

 KIRQ (Keyboard Interrupt Request) – By setting this flag to 1, keyboard requests the

processor to obtain its service and an interrupt is sent to the processor. It is used along

with the SIN flag.

 DIRQ(Display Interrupt Request) – The output device request the processor to obtain its

service for output operation, by activating this flag to 1.

Control registers

KEN (keyboard Enable) – Enables the keyboard for input operations.

DEN (Display Enable) – Enables the output device for input operations.

Program Controlled I/O

 It is the process of controlling the input and output operations by executing 2 sets of instruction,

one set for input operation and the next set for output operation.

 The program checks the status of I/O register and reads or displays data. Here the I/O operation

is controlled by program.

WAITK TestBit #0, STATUS (Checks SIN flag)

Branch = 0 WAITK

Move DATAIN, R0 (Read character)

[*Code to read a character from DATAIN to R0]

This code checks the SIN flag, and if it is set to 0 (ie. If no character in DATAIN Buffer), then

move back to WAITK label. This loop continues until SIN flag is set to 1. When SIN is 1, data is

moved from DATAIN to R0 register. Thus the program, continuously checks for input operation.

Similarly code for Output operation,

WAITD TestBit #0, STATUS (Checks SOUT flag)
 Branch = 0 WAITD

 Move R0, DATAOUT (Send character for display)

Digital Design and Computer Organization (BSC302) Module-4

 Page 7

The code checks the SOUT flag, and if it is set to 1 (ie. If no character in DATAOUT Buffer),

then move back to WAITK label. This loop continues until SOUT flag is set to 0. When SOUT is

0, data is moved from R0 register to DATAOUT (ie. Sent by processor).

Interrupt

 It is an event which suspends the execution of one program and begins the execution of another

program.

 In program controlled I/O, a program should continuously check whether the I/O device is free.

By this continuous checking the processor execution time is wasted. It can be avoided by I/O

device sending an ‘interrupt’ to the processor, when I/O device is free.

 The interrupt invokes a subroutine called Interrupt Service Routine (ISR), which resolves the

cause of interrupt.

 The occurrence of interrupt causes the processor to transfer the execution control from user

program to ISR.

Program1 ISR

The following steps takes place when the interrupt related instruction is executed:

 After the execution of current instruction i.

 Transfer the execution control to sub program from main program.

 Increments the content of PC by 4 memory location.

 It decrements SP by 4 memory locations.

 Pushes the contents of PC into the stack segment memory whose address is stored in SP.

 It loads PC with the address of the first instruction of the sub program.

Digital Design and Computer Organization (BSC302) Module-4

 Page 8

The following steps takes place when ‘return’ instruction is executed in ISR -

 It transfers the execution control from ISR to user program.

 It retrieves the content of stack memory location whose address is stored in SP into the PC.

 After retrieving the return address from stack memory location into the PC it increments the

Content of SP by 4 memory location.

Interrupt Latency / interrupt response time is the delay between the time taken for receiving an

interrupt request and start of the execution of the ISR.Generally, the long interrupt latency in unacceptable.

INTERRUPT HARDWARE
 The external device (I/O device) sends interrupt request to the processor by activating a bus line

and called as interrupt request line.

 All I/O device uses the same single interrupt-request line.

 One end of this interrupt request line is connected to input power supply by means of a register.

 The another end of interrupt request line is connected to INTR (Interrupt request) signal of

processor as shown in the fig.

 The I/O device is connected to interrupt request line by means of switch, which is grounded as

shown in the fig.

 When all the switches are open the voltage drop on interrupt request line is equal to the VDD and

INTR value at process is 0.

 This state is called as in-active state of the interrupt request line.

Digital Design and Computer Organization (BSC302) Module-4

 Page 9

 The I/O device interrupts the processor by closing its switch.

 When switch is closed the voltage drop on the interrupt request line is found to be zero, as the

switch is grounded, hence INTR=0 and INTR=1.

 The signal on the interrupt request line is logical OR of requests from the several I/O devices.

Therefore, INTR=INTR1 + INTR2 + + INTRn

ENABLING AND DISABLING THE INTERRUPTS

The arrival of interrupt request from external devices or from within a process, causes the suspension of

on-going execution and start the execution of another program.

 Interrupt arrives at any time and it alters the sequence of execution. Hence the interrupt to be

executed must be selected carefully.

 All computers can enable and disable interruptions as desired.

 When an interrupt is under execution, other interrupts should not be invoked. This is performed

in a system in different ways.

 The problem of infinite loop occurs due to successive interruptions of active INTR signals.

 There are 3 mechanisms to solve problem of infinite loop:

1) Processor should ignore the interrupts until execution of first instruction of the ISR.

2) Processor should automatically disable interrupts before starting the execution of the ISR.

3) Processor has a special INTR line for which the interrupt-handling circuit.

Interrupt-circuit responds only to leading edge of signal. Such line is called edge-

triggered.

• Sequence of events involved in handling an interrupt-request:

1) The device raises an interrupt-request.

2) The processor interrupts the program currently being executed.

3) Interrupts are disabled by changing the control bits in the processor status register (PS).

4) The device is informed that its request has been recognized.

In response, the device deactivates the interrupt-request signal.

5) The action requested by the interrupt is performed by the interrupt-service routine.

6) Interrupts are enabled and execution of the interrupted program is resumed.

Digital Design and Computer Organization (BSC302) Module-4

 Page 10

HANDLING MULTIPLE DEVICES

While handling multiple devices, the issues concerned are:

 How can the processor recognize the device requesting an interrupt?

 How can the processor obtain the starting address of the appropriate ISR?

 Should a device be allowed to interrupt the processor while another interrupt is

being serviced?

 How should 2 or more simultaneous interrupt-requests be handled?

VECTORED INTERRUPT

• A device requesting an interrupt identifies itself by sending a special-code to processor over bus.

• Then, the processor starts executing the ISR.

• The special-code indicates starting-address of ISR.

• The special-code length ranges from 4 to 8 bits.

• The location pointed to by the interrupting-device is used to store the staring address to ISR.

• The staring address to ISR is called the interrupt vector.

• Processor

→ loads interrupt-vector into PC &

→ executes appropriate ISR.

• When processor is ready to receive interrupt-vector code, it activates INTA line.

• Then, I/O-device responds by sending its interrupt-vector code & turning off the INTR signal.

• The interrupt vector also includes a new value for the Processor Status Register

INTERRUPT NESTING

• A multiple-priority scheme is implemented by using separate INTR & INTA lines for each device

• Each INTR line is assigned a different priority-level as shown in Figure.

Digital Design and Computer Organization (BSC302) Module-4

 Page 11

• Priority-level of processor is the priority of program that is currently being executed.

• Processor accepts interrupts only from devices that have higher-priority than its own.

• At the time of execution of ISR for some device, priority of processor is raised to that of the device.

• Thus, interrupts from devices at the same level of priority or lower are disabled.

Privileged Instruction

• Processor's priority is encoded in a few bits of PS word. (PS = Processor-Status).

• Encoded-bits can be changed by Privileged Instructions that write into PS.

• Privileged-instructions can be executed only while processor is running in Supervisor Mode.

• Processor is in supervisor-mode only when executing operating-system routines.

Privileged Exception

• User program cannot

→ accidently or intentionally change the priority of the processor &

→ disrupt the system-operation.

• An attempt to execute a privileged-instruction while in user-mode leads to a Privileged Exception.

SIMULTANEOUS REQUESTS

DAISY CHAIN

• The daisy chain with multiple priority levels is as shown in the figure.

Digital Design and Computer Organization (BSC302) Module-4

 Page 12

 The interrupt request line INTR is common to all devices as shown in the fig.

 The interrupt acknowledge line is connected in a daisy fashion as shown in the figure.

 This signal propagates serially from one device to another device.

 The several devices raise an interrupt by activating INTR signal. In response to the signal,

processor transfers its device by activating INTA signal.

 This signal is received by device 1. The device-1 blocks the propagation of INTA signal to

device-2, when it needs processor service.

 The device-1 transfers the INTA signal to next device when it does not require the processor service.

 In daisy chain arrangement device-1 has the highest priority.

 Advantage: It requires fewer wires than the individual connections.

ARRANGEMENT OF PRIORITY GROUPS

• In this technique, devices are organizes in a group and each group is connected to the processor at a

different priority level.

• Within a group device are connected in a daisy chain fashion as shown in the figure.

Direct Memory Access (DMA)

Digital Design and Computer Organization (BSC302) Module-4

 Page 13

 Direct Memory Access is the process of transferring the block of data at high speed in between main

memory and external device (I/O devices) without continuous intervention of CPU.

 This operation is performed by the control circuit, called as DMA controller.

 DMA controller is a part of the I/O interface.

 The data transfer operation in DMA is processed by the help of DMA controller.

 To initiate Directed data transfer between main memory and external devices DMA controller needs

parameters from the CPU.

 These 3 Parameters are:

1) Starting address of the memory block.

2) No of words to be transferred.

3) Type of operation (Read or Write).

After receiving these 3 parameters from CPU, DMA controller establishes directed data transfer

operation between main memory and external devices without the involvement of CPU. Hence the

processor is free to execute other programs.

Register of DMA Controller:

It consists of 3 type of register:

Starting address register:

The format of starting address register is as shown in the fig. It is used to store the starting address of

the memory block.

Word-Count register:

The format of word count register is as shown in fig. It is used to store the no of words to be transferred

from main memory to external devices and vice versa.

 Status and Controller register:

The format of status and controller register is as shown in fig.

Digital Design and Computer Organization (BSC302) Module-4

 Page 14

a) DONE bit:

 The DMA controller sets this bit to 1 when it completes the direct data transfer between main

memory and external devices.

 This information is informed to CPU by means of DONE bit.

b) R/W (Read or Write):

 This bit is used to differentiate between memory read and memory write operation. It is set

by a program instruction.

 The R/W = 1 for read operation and

= 0 for write operation.

 When this bit is set to 1, DMA controller performs read operation and transfers one block of

data from main memory to external device.

 When this bit is set to 0, DMA controller performs write operation and transfers one block of

data from external device to main memory.

c) IE (Interrupt enable) bit:

 The DMA controller enables the interrupt enable bit after the completion of DMA operation

d)Interrupt request (IRQ):

 The DMA controller requests the CPU for permission and data, to transfer new block of data

from source to destination by activating this bit.

The computer with DMA controller is as shown in the fig.:

Digital Design and Computer Organization (BSC302) Module-4

 Page 15

 In the sample architecture shown above, the DMA controller connects two external devices

namely disk 1 and disk 2 to system bus.

 The DMA controller also interconnects high speed network devices to system bus as shown

in the above fig.

 Let us consider direct data transfer operation by means of DMA controller without the

involvement of CPU in between main memory and disk 1.

 To establish direct data transfer operation between main memory and disk 1. DMA controller

request the processor to obtain 3 parameters namely:

1) Starting address of the memory block.

2) No of words to be transferred.

3) Type of operation (Read or Write).

 After receiving these 3 parameters from processor, DMA controller directly transfers block of

data between main memory and external devices (disk 1) depending on the operation.

 This information is informed to CPU by setting respective bits in the status and controller

register of DMA controller.

These are 2 types of request with respect to system bus

1). CPU request.

2). DMA request.

Highest priority will be given to DMA request.

 Actually the CPU generates memory cycles to perform read and write operations.

The DMA controller steals memory cycles from the CPU to perform read and write

operations. This approach is called as “Cycle stealing”.

Digital Design and Computer Organization (BSC302) Module-4

 Page 16

 An exclusive option will be given for DMA controller to transfer block of data between external

devices and main memory. Only after the transfer of whole block, signal is sent to the processor.

This technique is called as “Burst mode of operation.”

 Conflict may arise, if CPU and multiple DMA controllers, request for bus, at the same time. This

is resolved by bus arbitration.

BUS ARBITRATION
 Any device which initiates data transfer operation on bus at any instant of time is called as Bus-

Master.

 When the bus mastership is transferred from one device to another device, the next device is

ready to obtain the bus mastership.

 The bus-mastership is transferred from one device to another device based on the principle of

priority system. There are two types of bus-arbitration technique:

a) Centralized bus arbitration:

In this technique CPU acts as a bus-master or any control unit connected to bus can be acts as a bus

master.

The schematic diagram of centralized bus arbitration is as shown in the fig.:

The following steps are necessary to transfer the bus mastership from CPU to one of the DMA

controller:

 The DMA controller request the processor to obtain the bus mastership by activating BR (Bus

request) signal

 In response to this signal the CPU transfers the bus mastership to requested devices DMA

controller1 in the form of BG (Bus grant).

 When the bus mastership is obtained from CPU the DMA controller1 blocks the propagation of bus

grant signal from one device to another device.

 The BG signal is connected to DMA controller2 from DMA controller1, and so on as in daisy

fashion style as shown in the figure.

 When the DMA controller1 has not sent BR request, it transfers the bus mastership to DMA

controller2 by unblocking bus grant signal.

Digital Design and Computer Organization (BSC302) Module-4

 Page 17

 When the DMA controller1 receives the bus grant signal, it blocks the signal from passing to DMA

controller2 and enables BBSY signal. When BBSY signal is set to 1 the set of devices connected to

system bus doesn’t have any rights to obtain the bus mastership from the CPU.

b) Distributed bus arbitration:

 In this technique 2 or more devices trying to access system bus at the same time may participate

in bus arbitration process.

 The schematic diagram of distributed bus arbitration is as shown in the figure:

 The external device requests the processor to obtain bus mastership by enabling start arbitration

signal.

 In this technique 4 bit code is assigned to each device to request the CPU in order to obtain bus

mastership.

 Two or more devices request the bus by placing 4 bit code over the system bus.

 The signals on the bus interpret the 4 bit code and produces winner as a result from the CPU.

 When the input to the one driver = 1, and input to the another driver = 0, on the same bus line,

this state is called as “Low level voltage state of bus”.

 Consider 2 devices namely A & B trying to access bus mastership at the same time.

Let assigned code for devices A & B are 5 (0101) & 6 (0110) respectively.

 The device A sends the pattern (0101) and device B sends its pattern (0110) to master. The

signals on the system bus interpret the 4 bit code for devices A & B produces device B as a

winner.

 The device B can obtain the bus mastership to initiate direct data transfer between external

devices and main memory.

Digital Design and Computer Organization (BSC302) Module-4

 Page 18

SPEED, SIZE COST

• The main-memory can be built with DRAM (Figure 8.14)

• Thus, SRAM‟s are used in smaller units where speed is of essence.

• The Cache-memory is of 2 types:

1) Primary/Processor Cache (Level1 or L1 cache)

 It is always located on the processor-chip.

2) Secondary Cache (Level2 or L2 cache)

 It is placed between the primary-cache and the rest of the memory.

• The memory is implemented using the dynamic components (SIMM, RIMM, DIMM).

• The access time for main-memory is about 10 times longer than the access time for L1 cache.

Digital Design and Computer Organization (BSC302) Module-4

 Page 19

 CACHE MEMORIES
• The effectiveness of cache mechanism is based on the property of ‘Locality of Reference’.

Locality of Reference

• Many instructions in the localized areas of program are executed repeatedly during some time period

• Remainder of the program is accessed relatively infrequently (Figure 8.15).

• There are 2 types:

1) Temporal

 The recently executed instructions are likely to be executed again very soon.

2) Spatial

 Instructions in close proximity to recently executed instruction are also likely to be executed soon.

• If active segment of program is placed in cache-memory, then total execution time can be reduced.

• Block refers to the set of contiguous address locations of some size.

• The cache-line is used to refer to the cache-block.

Digital Design and Computer Organization (BSC302) Module-4

 Page 20

• The Cache-memory stores a reasonable number of blocks at a given time.

• This number of blocks is small compared to the total number of blocks available in main-memory.

• Correspondence b/w main-memory-block & cache-memory-block is specified by mapping-function.

• Cache control hardware decides which block should be removed to create space for the new block.

• The collection of rule for making this decision is called the Replacement Algorithm.

• The cache control-circuit determines whether the requested-word currently exists in the cache.

• The write-operation is done in 2 ways: 1) Write-through protocol & 2) Write-back protocol.

Write-Through Protocol

 Here the cache-location and the main-memory-locations are updated simultaneously.

Write-Back Protocol

 This technique is to

→ update only the cache-location &

→ mark the cache-location with associated flag bit called Dirty/Modified Bit.

 The word in memory will be updated later, when the marked-block is removed from cache.

During Read-operation

• If the requested-word currently not exists in the cache, then read-miss will occur.

• To overcome the read miss, Load–through/Early restart protocol is used.

Load–Through Protocol

 The block of words that contains the requested-word is copied from the memory into cache.

 After entire block is loaded into cache, the requested-word is forwarded to processor.

During Write-operation

• If the requested-word not exists in the cache, then write-miss will occur.

1) If Write Through Protocol is used, the information is written directly into main-memory.

2) If Write Back Protocol is used,

→ then block containing the addressed word is first brought into the cache &

Digital Design and Computer Organization (BSC302) Module-4

 Page 21

→ then the desired word in the cache is over-written with the new information.

 MAPPING FUNCTIONS

• Here we discuss about 3 different mapping-function:

1) Direct Mapping

2) Associative Mapping

3) Set-Associative Mapping

DIRECT MAPPING

• The block-j of the main-memory maps onto block-j modulo-128 of the cache (Figure 8.16).

• When the memory-blocks 0, 128, & 256 are loaded into cache, the block is stored in cache-block 0.

Similarly, memory-blocks 1, 129, 257 are stored in cache-block 1.

• The contention may arise when

1) When the cache is full.

2) When more than one memory-block is mapped onto a given cache-block position.

• The contention is resolved by allowing the new blocks to overwrite the currently resident-block.

• Memory-address determines placement of block in the cache.

Digital Design and Computer Organization (BSC302) Module-4

22

• The memory-address is divided into 3 fields:

1) Low Order 4 bit field

 Selects one of 16 words in a block.

2) 7 bit cache-block field

 7-bits determine the cache-position in which new block must be stored.

3) 5 bit Tag field

 5-bits memory-address of block is stored in 5 tag-bits associated with cache-location.

 As execution proceeds, 5-bit tag field of memory-address is compared with tag-bits associated with

cache-location. If they match, then the desired word is in that block of the cache. Otherwise, the block

containing required word must be first read from the memory. And then the word must be loaded into

the cache.

 ASSOCIATIVE MAPPING

• The memory-block can be placed into any cache-block position. (Figure 8.17).

• 12 tag-bits will identify a memory-block when it is resolved in the cache.

• Tag-bits of an address received from processor are compared to the tag-bits of each block of cache.

• This comparison is done to see if the desired block is present.

Digital Design and Computer Organization (BSC302) Module-4

23

• It gives complete freedom in choosing the cache-location.

• A new block that has to be brought into the cache has to replace an existing block if the cache is full.

• The memory has to determine whether a given block is in the cache.

• Advantage: It is more flexible than direct mapping technique.

• Disadvantage: Its cost is high.

SET-ASSOCIATIVE MAPPING

• It is the combination of direct and associative mapping. (Figure 8.18).

• The blocks of the cache are grouped into sets.

• The mapping allows a block of the main-memory to reside in any block of the specified set.

• The cache has 2 blocks per set, so the memory-blocks 0, 64, 128… 4032 maps into cache set „0‟.

• The cache can occupy either of the two block position within the set.

Digital Design and Computer Organization (BSC302) Module-4

24

6 bit set field

 Determines which set of cache contains the desired block.

6 bit tag field

 The tag field of the address is compared to the tags of the two blocks of the set.

 This comparison is done to check if the desired block is present.

• The cache which contains 1 block per set is called direct mapping. A cache that has „k‟ blocks per set is

called as“k-way set associative cache‟.

• Each block contains a control-bit called a valid-bit.

• The Valid-bit indicates that whether the block contains valid-data.

• The dirty bit indicates that whether the block has been modified during its cache residency.

Valid-bit=0 - When power is initially applied to system.

Valid-bit=1 - When the block is loaded from main-memory at first time.

Digital Design and Computer Organization (BSC302) Module-4

25

• If the main-memory-block is updated by a source & if the block in the source is already exists in

the cache, then the valid-bit will be cleared to “0‟.

• If Processor & DMA uses the same copies of data then it is called as Cache Coherence Problem.

• Advantages:

1) Contention problem of direct mapping is solved by having few choices for block placement.

2) The hardware cost is decreased by reducing the size of associative search.

REPLACEMENT ALGORITHM

• In direct mapping method, the position of each block is pre-determined and there is no need of

replacement strategy.

• In associative & set associative method, the block position is not pre-determined. If the cache is full and if

new blocks are brought into the cache, then the cache-controller must decide which of the old blocks has

to be replaced.

• When a block is to be overwritten, the block with longest time w/o being referenced is over-written.

• This block is called Least recently Used (LRU) block & the technique is called LRU algorithm.

• The cache-controller tracks the references to all blocks with the help of block-counter.

• Advantage: Performance of LRU is improved by randomness in deciding which block is to be

over- written.

Eg:

Consider 4 blocks/set in set associative cache.

 2 bit counter can be used for each block.

 When a ‘hit’ occurs, then block counter=0; The counter with values originally lower than

the referenced one are incremented by 1 & all others remain unchanged.

 When a ‘miss’ occurs & if the set is full, the blocks with the counter value 3 is removed, the

newblock is put in its place & its counter is set to “0‟ and other block counters are incremented

by 1.

BCS302- DDCO-VTU 2022 scheme

MODULE-5 BASIC PROCESSING UNIT

5.1 Some Fundamental Concepts

To execute an instruction, processor has to perform following 3 steps:

1) Fetch contents of memory-location pointed to by PC. Content of this location is an instruction

to be executed. The instructions are loaded into IR, Symbolically, this operation can be written as

IR[[PC]]

2) Increment PC by 4 P, [PC] +4

3) Carry out the actions specified by instruction (in the IR).

The first 2 steps are referred to as fetch phase; Step 3 is referred to as execution phase.

The operations specified by an instruction can be carried out by performing one or more

of the following actions:

1. Read the content of a given memory-location and load them into a register.

2.Read data from one or more register

3.Perform ALU operations and place the result into the register.

4.Store data from a register into a given memory location.

Figure 5.1 shows the single bus organization. ALU and all the registers are

interconnected via a single common bus. Data and address line of the external memory bus is

connected to the internal processor bus via MDR and MAR respectively(MDR-Memory Data

Register and MAR-Memory Address Register).

MDR has 2 inputs and 2 outputs. Data may be loaded

→ into MDR either from memory-bus (external) or

→ from processor-bus (internal).

MAR’s input is connected to internal-bus, and MAR‟s output is connected to external-

bus.Instruction-decoder & control-unit is responsible for

→ issuing the signals that control the operation of all the units inside the processor (and

for interacting with memory bus).

→ implementing the actions specified by the instruction (loaded in the IR)

Registers R0 through R(n-1) are provided for general purpose use by programmer.

Three registers Y, Z & TEMP are used by processor for temporary storage during

execution of some instructions.

These are transparent to the programmer i.e. programmer need not be concerned with

them because they are never referenced explicitly by any instruction.

MUX(Multiplexer) selects either

→ output of Y or

→ constant-value 4(is used to increment PC content).This is provided as input A

of ALU.

B input of ALU is obtained directly from processor-bus.

As instruction execution progresses, data are transferred from one register to another,

often passing through ALU to perform arithmetic or logic operation.

An instruction can be executed by performing one or more of the following operations:

1) Transfer a word of data from one processor-register to another or to the ALU.

2) Perform arithmetic or a logic operation and store the result in a processor-register.

3) Fetch the contents of a given memory-location and load them into a processor-

register.

4) Store a word of data from a processor-register into a given memory-location.

Figure 5.1: Single bus organization of the data path inside a processor

Disadvantage: Only one data word can be transferred over the bus in a clock cycle.

Solution: Providing multiple data-paths allows several data transfer to take place in parallel.

5.1.1 Register Transfers

Instruction execution involves a sequence of steps in which data are transferred from one

register to another.

Input & output of register Ri is connected to bus via switches controlled by 2 control-

signals: Riin & Riout. These are called gating signals.

When Riin=1, data on bus is loaded into Ri. Similarly, when Riout=1, content of Ri is

placed on bus. When Riout=0, bus can be used for transferring data from other registers.

For example, MOVE R1,R2

This transfers the content of register R1 to R2. This can be accomplished as follows.

1. Enable the output of Register R1 by setting R1out to 1.

2. Enable the input of Register R2 by setting R2in to 1.

All operations and data transfers within the processor take place within time-periods

defined by the processor clock. When edge-triggered flip-flops are not used, 2 or more clock-

signals may be needed to guarantee proper transfer of data. This is known as multiphase

clocking.

Input & Output Gating for one Register Bit

A 2-input multiplexer is used to select the data applied to the input of an edge-triggered D

flip-flop. When Riin=1, mux selects data on bus. This data will be loaded into flip-flop at rising-

edge of clock. When Riin=0, mux feeds back the value currently stored in flip-flop. Q output of

flip-flop is connected to bus via a tri-state gate. When Riout=0, gate's output is in the high-

impedance state. (This corresponds to the open circuit state of a switch). When Riout=1, the gate

drives the bus to 0 or 1, depending on the value of Q.

Figure 5.2: Input and output gating for a register

Figure 5.3: Input and output gating for one-bit register

5.1.2 Performing ALU operations

The ALU performs arithmetic operations on the 2 operands applied to its A and B inputs. One of

the operands is output of MUX & the other operand is obtained directly from bus. The result

(produced by the ALU) is stored temporarily in register Z.

Eg: Add R1,R2,R3

The sequence of operations for [R3][R1]+[R2] is as follows

1) R1out, Y in //transfer the contents of R1 to Y register

2) R2out, Select Y, Add, Zin //R2 contents are transferred directly to B input of ALU.

// The numbers of added. Sum stored in register Z

3) Zout, R3in //sum is transferred to register R3

The signals are activated for the duration of the clock cycle corresponding to that step. All other

signals are inactive.

Figure 5.4: ALU operation

(Note: In this Figure 5.4 , replace Register Ri with Registers R1, R2, R3)

5.1.3 Fetching a word from Memory

To fetch instruction/data from memory, processor transfers required address to MAR

(whose output is connected to address-lines of memory-bus). At the same time, processor issues

Read signal on control-lines of memory-bus. When requested-data are received from memory,

they are stored in MDR. From MDR, they are transferred to other registers.

The response time of each memory access varies. For this MFC (Memory Function

Completed): is used. It is the signal sent from Addressed-device to the processor. MFC informs

the processor that the requested operation is completed by addressed device.

Thus MFC is set to 1 to indicate that the contents of the specified location

→ have been read &

→ are available on data-lines of memory-bus

Consider the instruction Move (R1),R2. The sequence of steps is:

1) R1out, MARin, Read ;desired address is loaded into MAR & Read command is

issued

2) MDRinE, WMFC ;load MDR from memory bus & Wait for MFC response

from memory.

3) MDRout, R2in ;load R2 from MDR where WMFC=control signal that

causes processor's control circuitry to wait for arrival of MFC signal

Figure 5.5:Connection and control signal for Register MDR

Figure 5.6: Timing of a memory Read operation

5.1.4 Storing a word in memory

Consider the instruction Move R2,(R1). This requires the following sequence:

1) R1out, MARin ;desired address is loaded into MAR

2) R2out, MDRin, Write ;data to be written are loaded into MDR & Write command is issued

3) MDRoutE, WMFC ;load data into memory location pointed by R1 from MDR

5.2. Execution of a Complete Instruction.

Consider the instruction Add (R3),R1 which adds the contents of a memory-location

pointed by R3 to register R1. Executing this instruction requires the following actions:

1) Fetch the instruction.

2) Fetch the first operand.

3) Perform the addition.

4) Load the result into R1.

Control sequence for execution of this instruction is as follows

1) PCout, MARin, Read, Select4, Add, Zin

2) Zout, PCin, Yin, WMFC

3) MDRout, IRin

4) R3out, MARin, Read

5) R1out, Yin, WMFC

6) MDRout, SelectY, Add, Zin

7) Zout, R1in, End

Instruction execution proceeds as follows:

Step1 The instruction-fetch operation is initiated by loading contents of PC into MAR &

sending a Read request to memory. The Select signal is set to Select4, which causes the Mux to

select constant 4. This value is added to operand at input B (PC‟s content), and the result is

stored in Z

Step2 Updated value in Z is moved to PC.

Step3 Fetched instruction is moved into MDR and then to IR.

Step4 Contents of R3 are loaded into MAR & a memory read signal is issued.

Step5 Contents of R1 are transferred to Y to prepare for addition.

Step6 When Read operation is completed, memory-operand is available in MDR, and the

addition is performed.

Step7 Sum is stored in Z, then transferred to R1.The End signal causes a new instruction

fetch cycle to begin by returning to step1.

BRANCHING INSTRUCTIONS

Control sequence for an unconditional branch instruction is as follows:

1) PCout, MARin, Read, Select4, Add, Zin

2) Zout, PCin, Yin, WMFC

3) MDRout, IRin

4) Offset-field-of-IRout, Add, Zin

5) Zout, PCin, End

The processing starts, as usual, the fetch phase ends in step3.

In step 4, the offset-value is extracted from IR by instruction-decoding circuit. Since the

updated value of PC is already available in register Y, the offset X is gated onto the bus, and an

addition operation is performed.

In step 5, the result, which is the branch-address, is loaded into the PC. The offset X used

in a branch instruction is usually the difference between the branch target-address and the

address immediately following the branch instruction. (For example, if the branch instruction is

at location 1000 and branch target-address is 1200, then the value of X must be 196, since the PC

will be containing the address 1004 after fetching the instruction at location 1000).

In case of conditional branch, we need to check the status of the condition-codes before

loading a new value into the PC.

e.g.: Offset-field-of-IRout, Add, Zin,

If N=0 then End If N=0, processor returns to step 1 immediately after step 4.

If N=1, step 5 is performed to load a new value into PC

5.3 Pipelining:

The speed of execution of programs is influenced by many factors.

1. One way to improve performance is to use faster circuit technology to implement

the processor and the main memory.

2. Another possibility is to arrange the hardware so that more than one operation can

be performed at the same time. In this way, the number of operations performed

per second is increased, even though the time needed to perform any one

operation is not changed.

Pipelining is a particularly effective way of organizing concurrent activity in a computer

system. Consider how the idea of pipelining can be used in a computer. The processor executes a

program by fetching and executing instructions, one after the other.

Let Fi and Ei refer to the fetch and execute steps for instruction Ii. Execution of a

program consists of a sequence of fetch and execute steps, as shown in Figure 5.7

Figure 5.7 Sequential execution

.Now consider a computer that has two separate hardware units, one for fetching

instructions and another for executing them, as shown in Figure 5.8.

Figure 5.8 Hardware organization

Figure 5.9: Pipelined execution (2 stage)

The instruction fetched by the fetch unit is deposited in an intermediate storage buffer,

B1. This buffer is needed to enable the execution unit to execute the instruction while the fetch

unit is fetching the next instruction. The results of execution are deposited in the destination

location specified by the instruction.

Operation of the computer proceeds as in Figure 5.9. In the first clock cycle, the fetch

unit fetches an instruction I1 (step F1) and stores it in buffer B1 at the end of the clock cycle. In

the second clock cycle, the instruction fetch unit proceeds with the fetch operation for instruction

I2 (step F2). Meanwhile, the execution unit performs the operation specified by instruction I1,

which is available to it in buffer B1 (step E1).

By the end of second clock cycle, the execution of instruction I1 is completed and

instruction I2 is available. Instruction I2 is stored in B1,replacing I1,which is no longer needed.

StepE2 is performed by the execution unit during the third clock cycle, while instruction I3 is

being fetched by the fetch unit.

In this manner, both the fetch and execute units are kept busy all the time.

In summary, the fetch and execute units in Figure 5.3 constitute a two-stage pipeline in

which each stage performs one step in processing an instruction. An inter-stage storage buffer,

B1, is needed to hold the information being passed from one stage to the next. New information

is loaded into this buffer at the end of each clock cycle.

The processing of an instruction need not be divided into only two steps. For example, a

pipelined processor may process each instruction in four steps, as follows:

F Fetch: read the instruction from the memory.

D Decode: decode the instruction and fetch the source operand(s).

E Execute: perform the operation specified by the instruction.

W Write: store the result in the destination location.

The sequence of events for this case is shown in Figure 5.10.

Figure 5.10: Pipelined execution (4 stage)

Four instructions are in progress at any given time. This means that four distinct

hardware units are needed, as shown in Figure 5.11

Figure 5.11 Hardware organization

These units must be capable of performing their tasks simultaneously and without

interfering with one another. Information is passed from one unit to the next through a storage

buffer. As an instruction progresses through the pipeline, all the information needed by the stages

downstream must be passed along. For example, during clock cycle 4, the information in the

buffers is as follows:

• Buffer B1 holds instruction I3, which was fetched in cycle 3 and is being decoded by

the instruction-decoding unit.

• Buffer B2 holds both the source operands for instruction I2 and the specification of the

operation to be performed. This is the information produced by the decoding hardware in

cycle3.Thebuffer also holds the information needed for the write step of instruction I2 (stepW2).

Even though it is not needed by stage E, this information must be passed on to stage W in the

following clock cycle to enable that stage to perform the required Write operation.

• Buffer B3 holds the results produced by the execution unit and the destination

information for instruction I1.

5.3.1 Role of cache:

Each stage in a pipeline is expected to complete its operation in one clock cycle. Hence,

the clock period should be sufficiently long to complete the task being performed in any stage.

If different units require different amounts of time, the clock period must allow the

longest task to be completed. A unit that completes its task early is idle for the remainder of the

clock period. Hence, pipelining is most effective in improving performance if the tasks being

performed in different stages require about the same amount of time.

In Figure 5.12, the clock cycle has to be equal to or greater than the time needed to

complete a fetch operation. However, the access time of the main memory may be as much as

ten times greater than the time needed to perform basic pipeline stage operations inside the

processor, such as adding two numbers. Thus, if each instruction fetch required access to the

main memory, pipelining would be of little value.

Figure 5.12: Instruction execution (4 stage pipeline)

The use of cache memories solves the memory access problem. In particular, when a

cache is included on the same chip as the processor, access time to the cache is usually the same

as the time needed to perform other basic operations inside the processor.

This makes it possible to divide instruction fetching and processing into steps that are

more or less equal in duration. Each of these steps is performed by a different pipeline stage, and

the clock period is chosen to correspond to the longest one.

5.3.2 Pipeline performance

The pipelined processor in Figure 5.6 completes the processing of one instruction in each

clock cycle, which means that the rate of instruction processing is four times that of sequential

operation. The potential increase in performance resulting from pipelining is proportional to the

number of pipeline stages.

Let us consider an example of, one of the pipeline stages may not be able to complete its

processing task for a given instruction in the time allotted as in Figure 5.13.

Figure 5.13: Execution unit takes more than one cycle for execution

Here instruction I2 requires three cycles to complete, from cycle 4 through cycle 6. Thus,

in cycles 5 and 6, the Write stage must be told to do nothing, because it has no data to work with.

Meanwhile, the information in buffer B2 must remain intact until the Execute stage has

completed its operation. This means that stage 2 and, in turn, stage1 are blocked from accepting

new instructions because the information in B1 cannot be overwritten. Thus, steps D4 and F5

must be postponed.

Pipelined operation in Figure 5.13 is said to have been stalled for two clock cycles.

Normal pipelined operation resumes in cycle 7. Any condition that causes the pipeline to stall is

called a hazard.

There are three types of Hazards:

1. Data hazard

2. Instruction or control hazard

3. Structural hazard

Data hazard

A data hazard is any condition in which either the source or the destination operands of

an instruction are not available at the time expected in the pipeline. As a result some operation

has to be delayed, and the pipeline stalls.

Control hazards or instruction hazards

The pipeline may also be stalled because of a delay in the availability of an instruction.

For example, this may be a result of a miss in the cache, requiring the instruction to be fetched

from the main memory. Such hazards are often called control hazards or instruction hazards.

Figure 5.14 has instruction hazard with it.

Instruction I1 is fetched from the cache in cycle1, and its execution proceeds normally.

However, the fetch operation for instruction I2, which is started in cycle 2,results in a cache

miss. The instruction fetch unit must now suspend any further fetch requests and wait for I2 to

arrive. We assume that instruction I2 is received and loaded into buffer B1 at the end of cycle 5.

The pipeline resumes its normal operation at that point.

Figure 5.14 Instruction Hazard

Structural hazard

A third type of hazard that may be encountered in pipelined operation is known as a

structural hazard. This is the situation when two instructions require the use of a given hardware

resource at the same time.

Example: Load X(R1),R2

The memory address, X+[R1], is computed in step E2 in cycle4, then memory access

takes place in cycle5.The operand read from memory is written into register R2 in cycle 6. This

means that the execution step of this instruction takes two clock cycles (cycles 4 and 5). It causes

the pipeline to stall for one cycle, because both instructions I2 and I3 require access to the

register file in cycle 6 which is shown in Figure 5.15.

Figure 5.15: Structural hazard

Even though the instructions and their data are all available, the pipeline stalled because

one hardware resource, the register file, cannot handle two operations at once. If the register file

had two input ports, that is, if it allowed two simultaneous write operations, the pipeline would

not be stalled. In general, structural hazards are avoided by providing sufficient hardware

resources on the processor chip.

The most common case in which this hazard may arise is in access to memory. One

instruction may need to access memory as part of the Execute or Write stage while another

instruction is being fetched. If instructions and data reside in the same cache unit, only one

instruction can proceed and the other instruction is delayed.

Many processors use separate instruction and data caches to avoid this delay.

An important goal in designing processors is to identify all hazards that may cause the

pipeline to stall and to find ways to minimize their impact.

