e e
—
—_—

S

200dulo =9 (ol lesna) _Loster.
T DCPJ-U_L_]W) = o
%Alor,cwam£&?wW5mdwmj%

L ? MLQ dims WQWO‘%M%
Mgw

AND. 0k NOT.

cﬁﬂ? mMuX. De mu ede

MJbM%,%w
ﬂwﬂﬂxqumgmw
@ombmmd @mm%
@mbmdmaﬁ it Wg"d(dt} M)
|annuhm i If@?fﬁ W

wit will tram t
wmhm¢ﬂﬂ wﬁiUT wﬁﬁw%éi:

v H“ﬂﬁ w/® pak-data.
ma)u} cﬂaﬂl b’“ %uﬂ” LL# .

Ea

(¥ Scanned with OKEN Scanner

Comloin }YY) 0

Crett

¥ The nimput bim
am W?’M«p Syuil:

?Jﬂ;@md&

MM’[‘WLP Oﬂd
o Fer N fopub

3@ Block aémj%/m OF C"mb nabins
o vriabled WW

M A m- oldpet Vwrnabﬁmd]:’”ﬁféj

Loguﬂ cu’wxf”f (ngﬁbo 44

-

nnnnnn

T ouppo!

| grom. Stk b _
qavoluyd ke '%9“\)(«0}’7‘2/ chipt.

01

Dot UDWW.Q:;» _ |

M@;U{/meinmdhg7%
e ke
Shodt h?mrm (v a fﬂf?ﬁm&dml% .
MIW'%MJ o JJA?}}W vy

b obained

el ‘
gtf?”}wﬁd opuuift oo/ é}v&umwi} |
lefyrmime wiujmi-nwwe}@ p
Y kgt § A, o et b et

" Hlut &wm& dhat clofipef. the
) chir - -
WM Qz’mpﬂﬂéaﬁ Bosleam {25

v,

¢ calh - Olp5 S afD @m 1P Vaniakts

(¥ Scanned with OKEN S

nnnnnn

| ”)f'*?r oV) O’arcaré

SN
Drdw . M | AT arnel Vel

- GD’W&% OSUW 5W’ meaw?
ﬁbﬁ LSmu W)

(D&Qﬁ u;mms;m Dca/mpbe ~ 14 |
| mwf/ be f’ﬂ&é’ﬂt@)

oot e dun Lpstemit’ Jf eath- M
C{JJW (oolef - &w Jﬂd SW m&wﬂ?

K| Rt a loclk Cvmv@wwj a rodt
aket - -Fwn 533%% iﬁoaﬁ?m
aéLW

WWW&_ L

ok amm
(Lt eongs Aoy W"/‘mf’“ﬁe A

R0 o e otred—3 - Gocle [o7 e
Avimal obﬁﬂcf '

(¥ Scanned with OKEN Scanner

m _Exmxz@

(odp Lomve ¢

Olp. Eatii—3 (ool

g = TR R e 8

.X.
. W o OMV..@nU@ulII —

P

-

—r

(¥ Scanned with OKEN Scanner

For X oy | B
he goo]‘g‘(?fi”f ICvP |
KEOOLO _LE_L\
AR 11 || x| % |X
v oo [T
S
—2' X = BZP+BD +B
I
| “F‘({D\w DC,'.[T
s B L]0
?E (90 r’e;_}b C?Jr.h ‘
J?B ’@’ 0 r\, [_‘M
e U (R
X< 4 BOFES BC..
(A S ELTLER g
T 100 ob%:cumé’ﬂj_'__ﬁ@.. " ‘
?%W b - voamipulo] dhomaitoly
fre i prpre 9 U oD Gale
Frr TP o oL mdyo -

(¥ Scanned with OKEN Scanner

e ——

———

D F) ‘ g "95;[; A JZJ
| e mantpulatind agumﬁwf ¢ A obtal
; "@%/,W-ma@f/dew o tibput %W%wn y
cmalimaid o - thres @@ TENE 1y
[mp h

K g

i o () 0

— 0+ T0 = ¢ e &)
y B_C_Fg-@__’_j%rc'@”: B CC“f‘D)-—]—BC‘@
= : -
‘w= B +BLEHD) +0)

.H’ - B, ’ .‘."1‘ ¥ | ‘;h,i | '-
| wm. o BLO-EC

(¥ Scanned with OKEN Scanner

: gmaﬁwt %Mﬁ) Qublyauts), -

) 3)3”@/0 CW)PLL% pmﬁwm a’\}aﬁ“uJ?off

1 0 prmectian- Faow%hf? tasks.
Qmma e um s - P " A
et variend - andmates Gfe/micmf
yiThe ot badts, onibhmedst ‘sperati
a4 A wMJHmQ 1. oo to]?)ﬁ/? djgﬁf
14 @fmd)i@ add B amneish - & o)

porisf bl ,,Qe,mmu%mg b;)waium/ﬂ pto= o
o= o o=t IHlztod g

_ ﬂu@w 1
| o, /{maAW) bCM bi ? M
, MW GM A A (’,Mraf

SO

(¥ Scanned with OKEN S

nnnnnn

e Combimation UT%’%"&L!"%‘J’“ZJEWMM
B adblits 6 0} Hun biH - 4 cotllog)
halt adds, -

My thak puifrrm Mﬁm% Hrre
| b’JHf K. 'QM-MJ%—

Cyom . Hu Vel oxplamatin: aHh
e fioel et s UTW.“&)/‘J oo
bmﬁr"j Jps G b .“W}?’ A

ny ifp Variabled dlediqats e auqynd)

3 addomd B 2t
M'sz,‘w‘miw.ww Ak £

‘ Ml J’cdfm%p‘lgf o the 4wm
éff\/ﬁs aﬁ SC@W) 6 CCMW?DJ:"

At Ofpt -

(¥ Scanned with OKEN Scanner

) D o
| 1 %
bk 1.0
| o |

e
e |
—_——
1
L}

}_l

(¥ Scanned with OKEN Scanner

Qo %@‘a (= ”ﬁf

()U

ey

i) "me«(mwm}m 015 ‘HPF

cull Ao

a&&bm Wcjju Al

ned with OKEN S

nnnnnn

00 01 I\ o

m ’01 Cﬂ/% %Q*.f)c}ﬁu?(

(¥ Scanned with OKEN Scanner

| h&a’xw ddeutam. for et FH pnplymmkd
' Qop. form " slosum)y m&?f@

{1k cm Ao rnplomemnbnl -l 4o
oy ma ok geter ad Slaud Fnafil)

(¥ Scanned with OKEN Scanner

T ——

| sea® @),

Comhcg €2 (WG 4g) -y -
' e 1%144'51'%:2 *Q‘Lﬁ

|

jﬁ}@ Shouyf . wmwmqmw)
—adelon . (pn) -ckk - bo prvrle o po-bit

| B - farlw/ﬂe cmwm

At dbo . 252 16

Y (,v} wmam P/a A..-/oz g._,oau

e\ 110 ufprmed
‘ il et ppng o Ci= @

| eubgedptlr gt 1o
| Y Cqunt (o e

1 pe i '
fm%‘cl B Py PR
éu/m T At

0 WW% o+ 00 | 1 C iy

(¥ Scanned with OKEN Scanner

:ﬁﬂ“{ﬁ

W M msa/moqac&ama@f

yaﬁefn 598 ad«iﬂﬁ;"‘”—w
. eeliue - fh}*&% MTP(W?A

mg,g has bam P’W{’&?a//@f

(¥ Scanned with OKEN Scanner

8\

93, B Y & but

+ %@}ﬂgg value, dipmmds o0 Wi TP
‘ e hat immgdiot

—_—

[

(¥ Scanned with OKEN Scanner

m Tl 6 GO 0P Ot propesabid

| u/F&Jﬂa
‘i;xu 8WW pom et &

e cary propigetio B 50 impriont

R R gpuaﬂ (/OIJ"/) Wdﬁ ﬁ@ﬂUﬂ”W

% A A0 %ﬁju Y moﬁg}w

sy, OlF Ca- ol e

kit sic 6 b adelis becandt th

25 added -
i oo ot fvm MWMVWCWV '
pd T o wivwmw [e

’]M, moﬁ WM QMMT)CTMW
Iy CW’@L{/WW UD@C

(¥ Scanned with OKEN Scanner

nnnnnn

Chapter 4 Combinational Logic

o
L

3
}
) —
_)——
5

6o .

FIGURE 4.11
Logic diagram of carry lookahead generator

(¥ Scanned with OKEN Scanner

T Rd Dilary Adder—auniraciut s

e ———
-
e ———
C (&)
B, 4 4
As - Py P,
S3
Slim e
j G3 3 7
B,
AZ Pz P. 2
S
2 G .
L) G2
Carry
Lookahead
B, Generator
Ay A Py
S
P ¢ !
[&
By
Ay Fo Fo
CO SQ
D
G Co
FIGURE 4.12

Four-bit adder with carry lookahead

Binary Subtractor

The subtraction of unsigned binary numbers can be done most conveniently by means
of complements, as discussed in Section 1.5. Remember that the subtraction A — B can
be done by taking the 2's complement of B and adding it to A.The 2’s complement can
be obtained by taking the 1’s complement and adding 1 to the least significant pair of
bits. The 1’s complement can be implemented with inverters, and a 1 can be added to
the sum through the input carry of a full adder.

The circuit for subtracting A — B consists of an adder with inverters placed between
each data input B and the corresponding input of the full adder. The input carry Cp must

(¥ Scanned with OKEN Scanner

182 Chapter4 Combinational Logic

B action I d. Th
be equal to 1 when subtraction 1s pcrl‘orn?e. ; "
A, plus the 1’s complement of B, plus 1. This is equal to A pllfs the 2 Is complemep, o &
For unsigned numbers, that gives A — B if A = B or the 2 s complement ‘?f (B -)
if A < B. For signed numbers, the result is A — B, provided that there is pq ove

flow. (See Section 1.6.) . o e
The addition and subtraction operations can be comblqed into one circuit ity Ong
common binary adder by including an exclusive-OR gate with each full adder. A fo, ;

adder—subtractor circuit is shown in Fig. 4.13. The mode input M controls the Operalion
When M = 0, the circuit is an adder, and when M = 1, th(.i circuit becomes a Sllbtraclgr'
Each exclusive-OR gate receives input M and one of the inputs of B. Whel} M= we‘
have B @ 0 = B. The full adders receive the value of B, the input carry is 0, ang the
circuit performs A plus B.When M = 1,wehave B@® 1 = B’ and Cy = _1- T_he Binpy
are all complemented and a 1 is added through the input carry. Th§ circuit perforp
the operation A plus the 2’s complement of B. (The exclusive-OR with output V s ¢,
detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are addeq
and subtracted by the same basic addition and subtraction rules as are unsigned nyp,
bers. Therefore, computers need only one common hardware circuit to handle bogy
types of arithmetic. The user or programmer must interpret the results of such additiop
or subtraction differently, depending on whether it is assumed that the numbers are

e operation thus performed begq

signed or unsigned.

M
r ’ Y Y
Cy C; C

¢ FA - FA -« 2 FA < Cl FA L Cg

o | l
Vv (3 Sz Sl Sg

v) |

FIGURE 4.13

Four-bit adder-subtractor (with overflow detection)

(¥ Scanned with OKEN Scanner

Section 4.5 Binary Adder—Subtractor 183

/’-‘-—‘_—_ it it il — —
practice Exercise 4.6 R

Find A-B with A = 1001, and B = 0110,;

Answer: A—B = 10011,
‘-'——F—.-"-_.-‘_ —_—

OVerﬂOW
When (WO numbers With n digits each are added and the sum is a number occupying
p + 1 digts, We Say that an overflow occurred. This is true for binary or decimal num-
bers, Slg“?d or unsigned. When the addition is performed with paper and pencil, an
o\rerﬂow‘ 1snota pr(?blem, since there is no limit by the width of the page to write down
the sum. Overﬂo?v 1_5 f'l problem in digital computers because the number of bits that
hold the .umber is flmtf: and a result that contains » + 1 bits cannot be accommodated
by an n-bit word. For this reason, many computers detect the occurrence of an overflow,
and when 1t occurs, a corresponding flip-flop is set that can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on
whether the numbers are considered to be signed or unsigned. When two unsigned
qumbers are added, an overflow is detected from the end carry out of the most signifi-
cant position.In the case of signed numbers, two details are important: the leftmost bit
always Tepresents the sign, and negative numbers are in 2’s-complement form. When
two signed numbers are added, the sign bit is treated as part of the number and the end
carry does not indicate an overflow.

An overflow cannot occur after an addition i number is positive and the other is
negative, since adding a positive number to a negative number produces a result whose
magnitude is smaller than the larger of the two original numbers. An overflow may occur
if the two numbers added are both positive or both negative. To see how this can happen,
consider the following example: Two signed binary numbers, +70 and +80, are stored
in two eight-bit registers. The range of numbers that each register can accommodate is
from binary +127 to binary — 128. Since the sum of the two numbers is +150, it exceeds
the capacity of an eight-bit register. This is also true for —70 and —80. The two additions
in binary are shown next, together with the last two carries:

carries: 01 carries: 01
+70 01000110 =70 10111010
+80 01010000 =80 10110000
150 10010110 -150 01101010

Note that the eight-bit result that should have been positive has a negative sign bit (ie.,
the eighth bit) and the eight-bit result that should have been negative has a positive
sign bit. If, however, the carry out of the sign bit position is taken as the sign bit of the
result, then the nine-bit answer so obtained will be correct. But since the answer cannot
be accommodated within eight bits, we say that an overflow has occurred.

(¥ Scanned with OKEN Scanner

w condition can be detected by observing the carry i'nto the sign bjt Pos;
on. If these two carries are not equg a];

he examples in which the two carries

An overflo : D]
tion and the carry out of the sign bit positi
averflow has occurred. This 1s indicated 1in t

explicitly shown. If the two carries are applied .
detected when the output of the gate is equal to 1. For this method to work correctly, the

2’s complement of a negative number must be computed by t:akjng the 1’§ complemep,
and adding 1. This takes care of the condition when the maximum negative number

. dre
to an exclusive-OR gate, an overfloy i,

complemented. _ o
The binary adder—subtractor circuit with outputs C and V' is shown 1n Fig. 4.13.1f the

two binary numbers are considered to be unsigned, then the C bit detects a carry after
,ddition or a borrow after subtraction. If the numbers are considered to be signed, then
‘he V bit detects an overflow. If V = 0 after an addition or subtraction, then no over.
flow occurred and the n-bit result is correct. If V' = 1, then the result of the operation
contains 1 + 1 bits, but only the rightmost n bits of the number fit in the space availabl,
so zn overflow has occurred. The (n + 1) th bit is the actual sign and has been shifted

out of position.

(¥ scanned with OKEN Scanner

Section 4.9 Decoders 191

4,9 DECODERS
4.7 _—
Discrete quantities of information
A binary code of n bits is cap

are represented in digital systems by binary codes.
_ . . able of representing up to 2" distinct elements of coded
information. A dccod?r IS a combinational circuit that converts binary information from
n input lines 10 a maximum of 2" unique output lines. If the n-bit coded information has
unused combinations, the decoder may have fewer than 2" outputs.

The d.ccoders presented here are called n-to-m-line decoders, where m = 2. Their
purpose s to generate the 2" (or fewer) minterms of » input variables. Each combination
of inputs will assert a unique output. The name decoder is also used in conjunction with
other code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-to-eight-line decoder circuit of Fig.4.18.The three
inputs are decoded into eight outputs, each representing one of the minterms of the
three input variables. The three inverters provide the complement of the inputs, and each

DO - Ifyizf

— o

Dy =x'y'z

D, =x'yz’

D3 =x'yz

D; = xyz

UQUUUUTWJ

FIGURE 4.18
Three-to-eight-line decoder

(¥ Scanned with OKEN Scanner

192 Chapter 4 Combinational Logic

Table 4.6

Truth Table of a Three-to-Eight-Line D‘imfpj_ ______________ e
e e~ Outputs S 8
Inputs _ i e s
T ' D D, D
I y z D, Dy D, 3 4 5\06\0?
0 0 0 l 0 0 0 0 0 0 TN
0 : 0 0 0 0 0 !
0 0 1 " " . 0
0 0 0 I 0
0 1) ; 0
o 1 1 o o 0o 1 o,
1 0 0 0 0 0 0 1 0 0 "
| 1 0 0 0 0 0 1 0
1 (0
1 1 0 0 0 0 0 0 0 1 "
1 1 1 0 0 0 0 0 0 0 I
et

one of the eight AND gates generates one of the minterms. A particular applicatigy, of
this decoder is binary-to-octal conversion. The input variables represent a binary nyp,
ber, and the outputs represent the eight digits of a number in the octal number Systen
However, a three-to-eight-line decoder can be used for decoding an y three-bit code t(;
provide eight outputs, one for each element of the code.

The operation of the decoder may be clarified by the truth table listed in Table 44
For each possible input combination, there are seven outputs that are equal to 0 apq
only one that is equal to 1. The output whose value is equal to 1 represents the mintery
equivalent of the binary number currently available in the input lines.

Some decoders are constructed with NAND gates. Since a NAND gate produces the
AND operation with an inverted output, it becomes more economical to generate the
decoder minterms in their complemented form. Furthermore, decoders include one or
more enable inputs to control the circuit operation. A two-to-four-line decoder with an
enable input constructed with NAND gates is shown in Fig. 4.19. The circuit operates with
complemented outputs and a complement enable input. The outputs of the decoder are
enabled when E is equal to 0 (i.e., active-low enable). As indicated by the truth table, only
one output can be equal to 0 at any given time; all other outputs are equal to 1. The output
whose value is equal to 0 represents the minterm selected by inputs A and B. The circuit
is disabled when E is equal to 1, regardless of the values of the other two inputs. When the
circuit is disabled, none of the outputs are equal to 0 and none of the minterms are selected.
In general, a decoder may operate with complemented or uncomplemented outputs. The
enable input may be activated with a 0 or with a 1 signal. Some decoders have two or more
enable inputs that must satisfy a given logic condition in order to enable the circuit.

A decoder with enable input can function as a demultiplexer—a circuit that receives
information from a single line and directs it to one of 2" possible output lines. The selec-
tion of a specific output is controlled by the bit combination of selection lines. Th
decoder of Fig. 4.19 can function as a one-to-four-line demultiplexer when E is taken a5
data input line and A and B are taken as the selection inputs. The single input variable £
has a path to all four outputs, but the input information is directed to only one of the 0U¢
put lines, as specified by the binary combination of the two selection lines A and B. T

(¥ Scanned with OKEN Scanner

Section 4.9 Decoders 193

A &8 E -
-

E A B | Dy D, D, Dy

}D; I XX 1 1 1 1

: 0 0 0 0o 1 1 1

0 0 1 1 0 1 1

0o 1 0| 1 1 0 1

p, 0 1 1 1 1 1 0

FIGURE 4.19
Two-to-four-line decoder with enable input

teature can be verified from the truth table of the circuit. For example, if the selection
lines AB = 10, output D, will be the same as the input value E, while all other outputs
are maintained at 1. Because decoder and demultiplexer operations are obtained from
he same circuit,a decoder with an enable input is referred to as a decoder demultiplexer.

Decoders with enable inputs can be connected together to forma larger decoder cir-
cuit. Figure 4.20 shows two 3-to-8-line decoders with enable inputs connected to form a
4-t0-16-line decoder. When w = 0, the top decoder is enabled and the other is disabled.
The bottom decoder outputs are all 0’s, and the top eight outputs generate minterms
0000 to 0111, When w = 1, the enable conditions are reversed: The bottom decoder
outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all

X
3x8

Y decoder Dyto D

Z E

3x8 —-——DsloDls

' decoder
: E
FIGURE 4.20
3 x 8 decoders

4 X 16 decoder constructed with two

(¥ Scanned with OKEN Scanner

4 Chapter4 Combinational Logic

- inputs in decoderg
U's. This example demonstrates the uscfulnlcss Olf;“i?;ll’)lsls 'E'e a convenient [223 Other
ibisats ' In general, enable ‘ ur
combinational logic components. or the purpose of combis. or
interconnecting two or more standard componentslfor the purp Ning ”lcm
oo : S.
Into a similar function with more inputs and outpu

Practice Exercise 4.8

; ' tive-low enable, yg; .
Draw a logic diagram constructing a 3X8 decoder w th ai. using air
of 2X4 decoders; also draw a truth table for the configuration.

Answer:

X
2x4 ___DotgﬂaExyDﬂDlD2D3D4D5DﬁD7
decoder 00010000000
y = 00101000 ¢ g,
01000 100 o g
E—-.~[>c 011000 10 ¢ ¢,
10000 001 g g,
Pl 101000001[}{}
2X4 11000000010
decoder [~ Dyto D, 11100000 ¢ ¢ 4

E

FIGURE PE4.8

ombinational Logic Implementation

A decoder provides the 2

minterms of n input variables,
decoder is associated with

Each asserted output of the
- Since any Boolean functiop

at generates the minterms of
an external OR gate that forms their logical sum, provides a

of the function. In this Way, any combinational circuit with n
e implemented with an n-to-2"-line decoder and m OR gates.

uit by means of a decoder and
reuit be expressed as a sum of
the minterms of the input vari-
€ decoder outputs according to

the function, together with
hardware implementation
inputs and m outputs can b

From the truth table o

f the full-adder (see Table 44)
combinationa] circuit in

sum-of-minterms form:

SCy,2) = 3(1,2, 4, 7)
C(x, Y, Z) = 2(3! S! 6! 7)

, We obtain the functions for the

(¥ Scanned with OKEN Scanner

4.10

Section 4.10 Encoders 195

—

T s

y —] 3IxX 8
2 decoder

-1 S b B W N

FIGURE 4.21
Implementation of a full adder with a decoder

Since there are three inputs and a total of eight minterms, we need a three-to-eight-
line decoder. The implementation is shown in Fig. 4.21. The decoder generates the
eight minterms for x, y, and z. The OR gate for output S forms the logical sum of
minterms 1,2, 4, and 7. The OR gate for output C forms the logical sum of minterms
3,5,6,and 7

A function with a long list of minterms requires an OR gate with a large number of
inputs. A function having a list of k minterms can be expressed in its complemented
form F' with 2" — k minterms. If the number of minterms in the function is greater than
2"/2, then F' can be expressed with fewer minterms. In such a case, it is advantageous to
use a NOR gate to sum the minterms of F'. The output of the NOR gate complements
this sum and generates the normal output F. If NAND gates are used for the decoder,
as in Fig. 4.19, then the external gates must be NAND gates instead of OR gates. This is
because a two-level NAND gate circuit implements a sum-of-minterms function and is
equivalent to a two-level AND-OR circuit.

ENCODERS

An encoder is a digital circuit that performs the inverse operation of a decoder. An
encoder has 2" (or fewer) input lines and n output lines. The output lines, as an aggre-
gate, generate the binary code corresponding to each input value. An example of an
encoder is the octal-to-binary encoder whose truth table is given in Table 4.7 It has
eight inputs (one for each of the octal digits) and three outputs that generate the cor-
responding binary number. It is assumed that only one input has a value of 1 at any
given time.

The encoder can be implemented with OR gates whose inputs are determined
directly from the truth table. Output z is equal to 1 when the input octal digit is 1,3, 5,

(¥ Scanned with OKEN Scanner

196 Chapter4 Combinational Logic
utput x is 1 for digits 4,5,6 ¢, 7
Theg,

. e [d O
or 7 Output y is 1 for octal digits 2,3, 6,0r 7an yritpiti ot

conditions can be expressed by the following Boole

)|=D2+D3+D6+D7
.1'=D4+DS+D(,+D7

The encoder can be implemented with three QR gates. .
The encoder defined in Table 4.7 has the limitation that only one input can p, acliy,

at any given time. If two inputs are active simultaneously, the output produces ap, Unge.
fined combination. For example, if Dy and Dy are 1 simultaneously, the output of the
encoder will be 111 because all three outputs are equal tc: 1L .Thc output 111 doeg it
represent either binary 3 or binary 6. To resolve thi.s amb'lgmty, encoder circuyitg Must
establish an input priority to ensure that only one input is e-ncoded. If we Cstablish ,
higher priority for inputs with higher subscript numbers, and lf.bo.th D; and D are 1 at
the same time, the output will be 110 because Dj has higher priority than D,
Another ambiguity in the octal-to-binary encoder is that an output with a]| (g is
generated when all the inputs are 0; but this output is the same as when D, is equal to
1. The discrepancy can be resolved by providing one more output to indicate whether

at least one input is equal to 1.

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function, and handjes
the possibility that inputs might be in contention. The operation of the priority encoder
is such that if two or more inputs are equal to 1 at the same time, the input having the
highest priority will take precedence. The truth table of a four-input priority encoder is
given in Table 4.8. In addition to the two outputs x and ¥, the circuit has a third output
designated by V; this is a valid bit indicator that is set to 1 when one or more inputs are
equal to 1. If all inputs are 0, there is no valid input, and V is equal to 0. The other two

Table 4.7
Truth Table of an Octal-to-Binary Encoder
Inputs Outputs
bpb D, D, D; D, D bs D, X Y &
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 L
0 0 0 0 0 0 1 0 1 1 0
00 0o 0o 0o 0 o 1 g . ™

(¥ Scanned with OKEN Scanner

Section 4.10 Encoders 197

Table 4.8
Truth Table of a Priority Encoder
Inputs Outputs
'DO D] Dz D; X _Y—r_l;_
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

outputs are not inspected when V equals 0, and are specified as don’t-care conditions.
Note that whereas X’s in output columns represent don’t-care conditions, the X’s in the
input columns are useful for representing a truth table in condensed form. Instead of
listing all 16 minterms of four variables, the truth table uses an X to represent either 1
or 0. For example, X100 represents the two minterms 0100 and 1100.

According to Table 4.8, the higher the subscript number, the higher the priority of the
input is. Input D5 has the highest priority, so, regardless of the values of the other inputs,
when this input is 1, the output for xy is 11 (binary 3). D, has the next priority level. The
output is 10 if D, = 1, provided that D; = 0, regardless of the values of the other two
lower priority inputs. The output for D; is generated only if higher priority inputs are 0,
and so on down the priority levels.

The K-maps for simplifying outputs x and y are shown in Fig. 4.22. The minterms
for the two functions are derived from Table 4.8. Although the table has only five rows,
when each X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input
combinations. For example, the fourth row in the table, with inputs XX10, represents the

D, D,
D;D;, —_— p.o\D2Ds —
DD\ 00 01 11 10 oPIN 00 01 11 10
Mo g oy Barer= @] b 2 s Rl
00] X |, 11 HEEES 00| X fp1 | 1
iy ms my myg my ms my -: mg
01 1 1 e 01| 1 1+ |31
= D
my; myy myg miy b my My Ms || !
11 1 1 1 1] 1 17 e
Do g My my LT : Do mg ';’-'9 B [Mo
10 1 1 Ha 10 s 15
D, D;
I=DZ+D3 y=D3+D1D'2
FIGURE 4.22

Maps for a priority encoder

(¥ Scanned with OKEN Scanner

198 Chapter 4 Combinalionali.ogtc

Ds ————]
¥
D: e |

D] s]

Do

FIGURE 4.23
Four-input priority encoder

four minterms 0010, 0110, 1010, and 1110. The simplif‘it‘:d Boolean expr(?ssions for the
encoder are obtained from the maps. The condition for outPut .V is an OR fyp,
encoder is implemented in Fig. 4.23 accor, ding

priority he
tion of all the input variables. The priority
o the following Boolean functions:
X = D2 + D3
y=D;+DiD;
V=D{]+D1+D2+D3

.11 MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of
many input lines and directs it to a single output line. The selection of a particular
input line is controlled by a set of selection lines. Normally, there are 2" input lines and
n selection lines whose bit combinations determine which input is selected.

A two-to-one-line multiplexer connects one of two 1-bit sources to a comm
tination, as shown in Fig. 4.24. The circuit has two data input lines, one output line, and
one selection line S. When § = 0, the upper AND gate is enabled and /o has a path t0
the output. When S = 1, the lower AND gate is enabled and /; has a path to the outpul
The multiplexer acts like an electronic switch that selects one of two sources. The block
diagram of a multiplexer is sometimes depicted by a wedge-shaped symbol, as shownin
Fig. 4.24(b). It suggests visually how a selected one of multiple data sources is directe
into a single destination. The multiplexer is often labeled “MUX” in block diagrams.

A four-to_-one-line multiplexer is shown in Fig. 4.25. Each of the four inputs, 0
through I, is applied to one input of an AND gate. Selection lines S and So 4
decoded to select a particular AND gate. The outputs of the AND gates are applied
to a single OR gate that provides the one-line output. The function table lists ¢

on des-

8Lines represent si in circui
gnals in circuit drawings. It is comm i i o
multiplexer as input and output lines. = PR R S e

(¥ Scanned with OKEN Scanner

Section 4.11 Multiplexers 199

Iy 0
Y MUX Y
h 1
ly gt
s §
(a) Logic diagram (b) Block diagram
FIGURE 4.24

Two-to-one-line multiplexer

Iy

Lk

2& A i
0 0| I
01| &
S 1 0| L
1 1| L
So A
(a) Logic diagram (b) Function table
FIGURE 4.25

Four-to-one-line multiplexer

input that is passed to the output for each combination of the binary selection values.
To demonstrate the operation of the circuit, consider the case when 5,5y = 10. The
AND gate associated with input I, has two of its inputs equal to 1 and the third inPut
connected to I,. The other three AND gates have at least one input equal to 0, which
makes their outputs equal to 0. The output of the OR gate is now equal to the value of

(¥ Scanned with OKEN Scanner

Boolean Function Implementation with Multiplexers

In Section 4.9, it was shown that a decoder can be used to implement Boolean func-
tions by employing external OR gates. An examination of the logic diagram of a
multiplexer reveals that it is essentially a decoder that includes the OR gate within
the unit. The minterms of a function are generated in a multiplexer by the circuit
associated with the selection inputs. The individual minterms can be selected by the
data inputs, thereby providing a method of implementing a Boolean function of »
variables with a multiplexer that has n selection inputs and 2" data inputs, one for
each minterm.

We will now show a more efficient method for implementing a Boolean function of
variables with a multiplexer that has n — 1 selection inputs, instead of n selection inputs.
The first n — 1 variables of the function are connected to the selection inputs of the
multiplexer. The remaining single variable of the function is used for the data inputs. If
the single variable is denoted by z, each data input of the multiplexer will be z,z", 1,0r
0. To demonstrate this procedure, consider the Boolean function

F(x,y,2) = 2(1,2,6,7)

(3 scanned with OKEN Scanner

4XIMUX |
y —1 8
x y z|F - ¢ —tS)
0 0 lJI
0 1 01 F=2
0 1 1/0 7 —1
1 0 0(0 p=p 0 —2
0 1|0
] —13
1 1 011 pai
1 1 11

(a) Truth table (b) Multiplexer implementation

FIGURE 4.27
Implementing a Boolean function with a multiplexer

xy = 00, data input 0 has a path to the output, and that makes F equal to z.In 3 simily,
fashion, we can determine the required input to data lines 1,2, and 3 from the value o
Fwhen xy = 01, 10, and 11, respectively. This particular example shows all four pOs.
sibilities that can be obtained for the data inputs.

The general procedure for implementing any Boolean function of # variables wit
a multiplexer with n — 1 selection inputs and 2"~! data inputs follows from the previ-
ous example. To begin with, Boolean function is listed in a truth table. Then firstn -1
variables in the table are applied to the selection inputs of the multiplexer. For each
combination of the selection variables, we evaluate the output as a function of the last
variable. This function can be 0, 1, the variable, or the complement of the variable. These
values are then applied to the data inputs in the proper order.

As a second example, consider the implementation of the Boolean function

F(A,B,C,D) = 5(1,3,4,11,12, 13, 14, 15)

This function is implemented with a multiplexer with three selection inputs as shown in
Fig. 4.28. Note that the first variable A4 must be connected to selection input S, so that
A, B, and C correspond to selection inputs S5, S, and So, respectively. The values for fhﬁ
data inputs are determined from the truth table listed in the figure. The corresponding
data line number is determined from the binary combination of ABC. For example, the
table shows that when ABC = 101, F = D, so the input variable D is applied to datd
input 5. The binary constants 0 and 1 correspond to two fixed signal values. When int¢-
grated circuits are used, logic 0 corresponds to signal ground and logic 1 is equivalent 10
the power signal, depending on the technology (e.g.,3V).

(¥ Scanned with OKEN Scanner

Section 411 Multiplexers 203

=
=

.25

T

oo
—_—0

8 x 1MUX

oo
oo

‘\
|

oo
S o
——
—

oo

i
oo
Ll =]

oo
— —
—
i —
oo =
el
Il
o

n
I
(=]
=]

_
| F%F'

R T T

—
oo
-0

[Sera—
oo (o e]
—
— o

|

—t i
—
oo
—o
[
&!
Il
iy

—_

._.
—
[—y
-
n
]
[y

FIGURE 4.28
implementing a four-input function with a multiplexer

—

practice Exercise 4.9
Implement the Boolean function F(4, B, C) = %(3,5,6,7) with a multiplexer.

Answer:
4 X 1 MUX
B S
A 5,
0 0 =
A'BC C—1
AB'C C—2
AB=ABC+ ABC' 1—3

FIGURE PE4.9

(¥ Scanned with OKEN Scanner

Three-State Gates igital cireuit 1
: o se-state gates—digital circuits at _
A multiplexer can be constructed with three-state g g e i

three states Two of the states are signals cquimlcntllo loglc l_and IOEIC_O asin a Vep,
_ : is a hich-impedance state in which (1) the logic behayeg lik
tional gate. The third state 1s a fugh-impe disconnected, (2) the o Kean
open circuit, which means that the output appears to be disc i Circuit a
n}\ logic significance, and (3) the circuit connected to the output of the three-s{ate gate
i;ngt:m;fs;chted h\ lhe\inputs to the gate. Three-state gates may perfong any CO""emiona]
logic. such as AND or NAND. However, the one most Fommonly used is the bu_ffer gate

“The graphic symbol for a three-state buffer gate is shown in Fig. 4.29. Tt jg distjp,.
suished from a normal buffer by an input control line entering the bottom of the Symbo,
:I‘ue buffer has a normal input. an output, and a control input th.at determines the State
of the output. When the control input is equal to 1, the output is enabl.ed and the g,
behaves like a conventional buffer. with the output equal to the nox:ma! nput. Whep
control input is 0. the output is disabled and the gate.goes to a high-impedance State,
regardless of the value in the normal input. The high-impedance state of a three-stae
ga;e provides a special feature not available in other gates. Ber.:ause of this feature |,
large number of three-state gate outputs can be connected with wires to form a Commoyp,
line without endangering loading effects.

The construction of multiplexers with three-state buffers is demonstrated inFig. 43,
Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three.
state buffers and an inverter. The two outputs are connected together to form a single
output line. (Note that this type of connection cannot be made with gates that do pot
have three-state outputs.) When the selected input is 0, the upper buffer is enabled by its
control input and the lower buffer is disabled. Output Y'is then equal to input A. When
the select input is 1, the lower buffer is enabled and Y is equal to B.

The construction of a four-to-one-line multiplexer is shown in Fig. 4.30(b). The out-
puts of 4 three-state buffers are connected together to form a single output line, The
control inputs to the buffers determine which one of the four normal inputs J; through
I; will be connected to the output line. No more than one buffer may be in the active
staic at any given time. The connected buffers must be controlled so that only 1 three-
state buffer has access to the output while all other buffers are maintained in a high-
impedance state. One way to ensure that no more than one control input is active at
any given time is to use a decoder, as shown in the diagram. When the enable input of
the decoder is 0, all of its four outputs are 0 and the bus line is in a high-impedance
state because all four buffers are disabled. When the enable input is active, one of the
three-state buffers will be active, depending on the binary value in the select inputs of

Normal input A Output Y =Aif C = 1
High-impedance if C = 0

Control input C

FIGURE 4.29
Graphic symbol for a three-state buffer

(¥ Scanned with OKEN Scanner

L '
—Y
A I L >
0
Select | i1
i elect] 2% 4 1
B So
decoder 2
Enable —{ EN
select — 3

(a) 2-to-1-line muX (b) 4-to-1-line mux

FIGURE 4.30
Multiplexers with three-state gates

the decoder. Careful investigation reveals that this circuit is another way of constructing

a four-to-one-line multiplexer.

412 HDL MODELS OF COMBINATIONAL
CIRCUITS

Basic features of Verilog and VHDL were introduced in Chapter 3. This section intro-
duces additional features of those languages, presents more elaborate examples, and

compares alternative descriptions of combinational circuits.”
Verilog and VHDL support three common styles of modeling combinational circuits:
also called structural modeling, instantiates and interconnects
rm a more complex circuit having a desired functionality.

ribes a circuit by specifying its gates and how they are

* Gate-level modeling,
basic logic circuits to fo
Gate-level modeling desc
connected with each other.

7 L . .
Sequential circuits and their models

s | -

Verilog also supports switch-level modeling for directly : .
Sﬁ_metimes used in modeling and simulation, but not in synthesis. We W_llll no
this text, but we provide a brief introduction in Appendix A.3. For additiona

language reference manual.

are presented in Chapter 5. R .
representing MOS transistor circuits. This style is
¢ switch-level modeling in

t us .
| information see the Verilog

(¥ Scanned with OKEN Scanner

Tahie 4,10

Some Verilog Operators

Symbol

e ——————

—————

-. dlp"e-ration

e ————

Op.e;rla‘tioﬁ “

—r e

———

binary addition
binary subtraction
bitwise AND
bitwise OR
bitwise XOR
bitwise NOT
equality
greater than
less than
concatenation
conditional

&&
1

logical AND
logical OR

logical NOT

& Scanned with OKEN Scanner

DL Example 4.4 (Dataflow: Two-to-Four Line Decoder)

Verilog
i Dataflow description of two-to-four-line decoder

/ See Fio. 4.19. Note: The figure uses symbol E, but the

 Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (// Verilog 2001, 2005 syntax

output [0: 3] D,
input A, B,

enable
).

assign D[0] = (('A) && (IB) && (lenable)),
D[1] = 1((1A) && B && (lenable)),
D[2] = ((A) && (! B) && ('enable)),
D[3] = I(A && B && (lenable));

endmodule

(¥ scanned with OKEN Scanner

HDL Example 4.5 (Dataflow: Four-Bit Adder)

Verilog

// Dataflow description of four-bit adder
/I Verilog 2001, 2005 module port syntax
module binary_adder (

output C_out,

output [3: 0] Sum,

input [3: 0] A, B,

input C_in
);
assign {C_out, Sum}=A+B + C_in // Continuous assignment statement
endmodule

G Scanned with OKEN Scanner

HDL Example 4.7 (Dataflow: Two-to-One Multiplexer)

Verilog

/I Dataflow description of two-to-one-line multiplexer
module mux_2x1_df (m_out, A, B, select);

output m_out;
input A, B;
input select;
assign m_out = (select)? A : B; /I Conditional operator
endmodule

22The conditional operator is a ternary operator, requiring three operands.

(3 scanned with OKEN Scanner

module decoder_2x4_df_beh (// Verilog 2001, 2005 syntax
output [0: 3] D, |
input A, B,
enable
);
always @ (A, B, enable) begin

D[0] <= I((!A) && (B) && (!enable)),
D[1] == |((lA) && B && (lenable)),
D[2] <= I(A && (IB) && (‘enable)),
D[3] <= |(A && B && (lenable));
end;

endmodule

G Scanned with OKEN Scanner

One Line Multiplexer)

HDL Example 4.9 (Behavioral: Two-to-
/__Verilog (Procedural Statement)

4 /| Behavioral description of two-to-one-line multiplexer
module mux_2x1_beh (m_out, A, B, select);
output m_out;
input A, B, select;
reg m_out;

always @ (A or B or select) // Alternative: always @ (A, B, select)

if (select == 1) m_out = A;
else m_out = B;
endmodule

(¥ scanned with OKEN Scanner

Verilog

// Behavioral description of four-to-one line multiplexer
/' Verilog 2001, 2005 port syntax
module mux_4x1_beh
(output reg m_out,
input in_0,in_1,in_2, in_3,
input [1: 0] select
);
always @ (in_0, in_1,in_2, in_3, select) // Verilog 2001, 2005, SV syntax
case (select)
2'b00: m_out <=in_0;
2'b01: m_out<=in_1;
2'b10: m_out <=in_2;
2'b11: m_out<=in_3;
endcase
endmodule '

(¥ scanned with OKEN Scanner

TR J i
2ynenronous sequential Logic

INTRODUCTION

5.2

Hand- :
eras, pg:slgni(ivéf:fﬁ Cel; 13110.“‘35, llﬂv'ignlion receivers pt':rSOﬂaluCOmputer& di gita A \ f;
ability to send, r a players, and virtually al electronic €M mer products g, "M |
form nd, receive, store, retrieve, and proccssrnformat{OH represented in the |
at. Thf{ technology enabling and supporting these devices IS critically depe M, |
on elgctromc components that can store information; that is, have memory. Thig Chnde;,, |
examines the operation and control of these Jevices and their use in circuits and en:Em
you to better understand what is happening in hese devices ?vhe'n you interagy . |
en combinational—thejr Oulplr: 'a

them. The digital circuits considered thus far have be
depends only and immediately on t s they have no memory that is, they ;|
|

heir input et B8
not depend on past values of their in ential circuits, OWEVET, act as stor,, |
retain, an

puts. Sequen i _
elements and have memory. They can Stores d then retrieve information yp,
needed at a later time. It is important that you understand the distinction bety,,

Sequential and combinational circuits.

—

SEQUENTIAL CIRCUITS ___———

circuit. It consists of a combination|

sequential

connected to form a feedback path. The storag

Figure 5.1 shows a block diagram of 2
circuit to which memory elements aré ; : :
elements are devices capable of storing binary information. The binary {nfor.manon
stored in these elements at any given time defines the state of the sequentI-aI circuit at
that time. The sequential circuit receives binary information from extem'al inputs tha
together with the present state of the storage elements, d.efenmnc the l:fmary value Pt
the outputs. These external inputs also Jetermine the condition for changing the state n
the storage elements. The block diagram demonstrates that the outputs 1n a sequential

t state of the storag

circuit are a function not only of the inputs but also of the presen :
elements. The nex Jements is also a function of external inpus

¢ state of the storage € .
and the present state. Thus, a sequential circuit is specified by 2 time sequence of inpufs
outputs, and inferna] logic depend on

| states. In contrast, the outputs of combinationa
only the present values of the inputs.
There are two main types of sequential circuits, and their classification
the timing of their signals. A synchronous sequential circuit is a system W

is a function of
hose behavior

> Quipuls

Inputs ——>
Combinational

circuit
Memory

! elements
FIGURE 5.1

Block diagram of sequential circuit

(¥ Scanned with OKEN Scanner

Section 5.2 Sequential Circuits 263

e defined from the knowledge of its si —— '
= e ge tf]ts signals at discrete instants of time. The behav-
an asynchronous sequential circuit depends upon the input signal i
A the order in which the inputs change. The storage II asth o el sl
uential circuits are ti i i ements commonly used in
10US sequenti: reuits are time-delay devices. The storage capability of a time-
delay device varies with the time it takes for the signal to propagate through the device
In ractice, the internal propagation delay of logic gates is of sufficient duration u;
roduce the needed delay, sO that actual delay units may not be necessary. In gate-type
sy chronous systems, the storage elements consist of logic gates whose propagation
delay provides the required storage. Thus, an asynchronous sequential circuit may be
regarded asa combinational circuit with feedback. Because of the feedback among logic
ay become unstable at times. The instability

gates. an qsynchronous sequential circuit m
oroblem impOSes many difficulties on the designer, and limits their use. These circuits

will not be covered in this text.
A synchronous sequential circuit employs signals that affect the storage elements at

only discreté instants of time. Synchronization is achieved by a timing device called a
cioék generator. which provides a clock signal having the form of a periodic sequence
of clock pulses. The clock signal is commonly denoted by the identifiers clock and clk.
The clock pulses are distributed throughout the system in such a way that storage ele-
ments are affected only with the arrival of each pulse. In practice, the clock pulses
Jetermine when computational activity will occur within the circuit, and other signals
(external inputs and otherwise) determine what changes will take place affecting the
storage elements and the outputs. For example, a circuit that is to add and store two
hinary numbers would compute their sum from the values of the numbers and store the
cum at the occurrence of a clock pulse. Synchronous sequential circuits that use clock
pulses 0 control storage elements are called clocked sequential circuits and are the most
frequently encountered type 1n practice. They are called synchronous circuits because
the activity within the circuit and the resulting updating of stored values is synchronized
to the occurrence of clock pulses. The design of synchronous circuits is feasible because
they seldom manifest instability problems, and their timing is easily broken down into
independent discrete Steps, each of which can be considered separately.

The storage elements (memory) used in clocked sequential circuits are called flip-
flops. A flip-flop is 2 binary storage device capable of storing one bit of information. In
2 stable state, the output of a flip-flop is either 0 or 1. A sequential circuit may use many
flip-flops to store as many bits as necessary. For example, 2 word of data may be stored as
2 64-bit value. The block diagram of a synchronous clocked sequential circuit is shown in
Fig.5.2.The ouiputs aré formed by a combinational logic function of the inputs to the cir-
cuit or the values stored in the flip-flops (or both). The value that is stored in a flip-flop
when the clock pulse occurs is also determined by the inputs to the circuit or the values
presently stored in the flip-flop (or both). The new value is stored (i.e., the flip-flop is
updated) when a pulse of the clock signal occurs. Prior to the occurrence of the clock
pulse, the combinational logic forming the next value of the flip-flop must have reached
leetgblc .v_alue. Consequently, the speed at which the combinational logic circuits oper-
. 1111$e Clr-ltlfi:a]. I_f the clqck (synchronizing) pulses arrive at a regular interval, as sho“fn

iming diagram in Fig. 5.2, the combinational logic must respond to a change in

canb
jorof
{fime an
asynchmnol

(¥ Scanned with OKEN Scanner

eSS K

Inputs |
Cmnhinatmnal

circuit

I

(a) Block diagram

Flip-flops

Clock pulses

] L

- ming diagram of clock pulses

(b) Ti

FIGURE 5.2

Synchronous clocked sequential circuit
flop in time t0 be updated before tl.w' next Pulse arrives, Pmpaga
¢ role in determining the minimum interval betweep ClOn:I;

uit to operate correctly. A change in state of the flip-flo,

is initiated only by a clock pulse transition—-fc:r examp%e, when the value of the clogy
signals changes from 0to 1. When a clock pulse 18 not active, the _feedback loop betwee,
the value stored in the flip-flop and the value formed at the input to the flip-flop
effectively broken because the flip-flop outputs cannot change even if the outputs of .
] circuit driving their inputs change. Thus, the transition from one state t,
intervals dictated by the clock pulses.

the state of the ﬂip.
tion delays play an importan
pulses that will allow the circ

combination
the next occurs only at predetermined

Practice Exercise 5.1

Describe the fundamental difference between the output of a combinational circuit and
the output of a sequential circuit.

Answer: The output of a combinational circuit depends on only the inputs to the circuit

the output of a sequential circuit depends on the inputs to the circuit and the present
state of the storage elements.

STORAGE ELEMENTS: LATCHES

A storage o A 0
as powegr ise l(;:;nliz?rég ?Odtlﬁltﬂl. circuil can maintain a binary state indefinitely (as long
The major differences amoe circuit), until directed by an input signal to switch stal®
inputs they possess and in tﬁg various types of storage elements are in the number 0
age elements that operate wi € manner in which the inputs affect the binary state. Stor

perate with signal levels (rather than signal transitions) are referre

(¥ Scanned with OKEN Scanner

n.: M Sl()
| - e .I.lTIQllti' at
[. rﬂ". Hf()ﬂ are

yel-sensitive devices; flip-

:;ents are related be:aS;E Iflops e Edgc-scmmw devices. T

Ause latches are the hagic gir evices. The two types of storage ele-
Facted. Although latches are ey YASIC circuits from which all flip-flops are con

i or storing bi i for t !
of asynchronous sequential circyj o8 Oy ibformat |
o) y mtormation ;
synchronous sequential circuits l[l}lS,‘thy b el e ﬁar:ﬁ < lth;scxgl:
- because they are the building .hl(;(‘:k‘q of f{?i‘;cf"l(jjpq T“’w

ever, we Will now consider the
 ering flin-flops ¢ fundamental stora s ;
consl g thp-flops in the next sectjon ge mechanism used in latches before

.ﬂ"'f"ﬂ‘-"PS. Latches are said to be

SR Lat(h

The SR latch is a circuit with ty
gates, and two inputs labeled Tgofg‘:):;czu;éled NOR gates or two cross-coupled NAND
two cross-coupled NOR gates is Shown,innF. R SfOr reset. The SR latch constructed with
output @ = 1 and Q" = 0, the latch is I-EI' 3. The latch has two useful states. When
Q' =1it is in the reset state. Outputs Q - tC: be in the set state. When @ = 0 and
other. However, when both i and Q' are normally the Complement- of egch
inputs are equal to 1 at the same time, a condition i1 which
poth outputs are e_qual to 0 (rather than be mutually compleme;ltary) occurs. If both
m%utfsir?;s ;?;2 i\;'iltcged to 0 simultaneously, the device will enter an unpredictable or
;)lgthe inputs to Lis fsrb? dﬂ;::fstable state. Consequently, in practical applications, setting
Under normal Con,d itions, both inputs of the latch remain at 0 unless the state has to
be changed. The application of a momentary 1 to (only) the § input causes the latch to
go to the set state. The S input must go back to 0 before any other changes take place,
in order to avoid the occurrence of an undefined next state that results from the forbid-
den input condition. As shown in the function table of Fig. 5.3(b), two input conditions

cause the circuit to be in the set state. The first condition (S = 1, R = 0) is the action
that must be taken by input § to bring the circuit to the set state. Removing the active
h inputs return to 0, it is then

input from S leaves the circuit in the same state. After bot
possible to shift to the reset state by momentarily applying a 1 to the R input. The 1
can then be removed from R, whereupon the circuit remains in the reset state. Thus,
when both inputs S and R are equal to 0, the latch can be in either the set or the reset

1
’ ’ S RIQQ
0 R (reset) 0 _—
1 0(10
0 01 O(afterS=1,R=0)
1 0 1]01
' { . 0 0l0 1 (afterS=0,R=1)
! 0 id
. 5 (set) 1 1|0 0 (forbidden)
(b) Function table

(a) Logic diagram

FIGURE 5.3
SR latch with NOR gates

(¥ Scanned with OKEN Scanner

266 Chapter 5 Synchronous Sequential Logic

nEN sreQ ‘
0 - S (set) 0 |

{1) } 1 é(anerszl"’“n)
L P R
0 R (reset) . S -

(a) Logic diagram (b) Function table
FIGURE 5.4
SR latch with NAND gates

state, depending on which input was most recen_lly a 1. When inputs are applieq, the
resulting (next) state of the latch depends on the inputs and on the present state of the
latch.

If a 1 is applied to both the S and R inputs of the latch, both outputs go to q Thig
action produces an undefined next state, because the state that results from the inpyt
transitions depends on the order in which they return to 0. It also violates the require.
ment that outputs be the complement of each other. In normal operation, this conditjon
is avoided by making sure that 1’s are not applied to both inputs simultaneously,

The SR latch with two cross-coupled NAND gates is shown in Fig. 5.4, It Operates
with both inputs normally at 1, unless the state of the latch has to be changed. The
application of 0 to the § input causes output Q to go to 1, putting the latch in the et
state. When the § input goes back to 1, the circuit remains in the set state. After both
inputs go back to 1, we are allowed to change the state of the latch by placing a 0 in the
R input. This action causes the circuit to go to the reset state and stay there even after
both inputs return to 1. The condition that is forbidden for the NAND latch is both
inputs being equal to 0 at the same time, an input combination that should be avoided.

In comparing the NAND with the NOR latch, note that the input signals for the
NAND require the complement of those values used for the NOR latch. Because the
NAND latch requires a 0 signal to change its state, it is sometimes referred to as an S'R’
latch. The primes (or, sometimes, bars over the letters) desi gnate the fact that the inputs
must be in their complement form to activate the circuit.

The operation of the basic SR latch can be modified by providing an additional
input signal that determines (controls) when the state of the latch can be changed by
determining whether § and R (or §’ and R’) can affect the circuit. An SR latch witha
control input is shown in Fig. 5.5. It consists of the basic SR latch and two additional
NAND gates. The control input En acts as an enable signal for the other two inputs. The
outputs of the two additional NAND gates stay at the logic-1 level as long as the enable
signal remains at 0. This is the quiescent condition for the SR latch. When the enable
input goes to 1, information from the S or R input is allowed to affect the latch. The set
state is reached with § = 1,R = 0, and En = 1 (active-high enabled). To change '
the reset state, the inputs must be § = 0, R = 1, and En = 1. In either case, when En
returns to 0, the circuit remains in its current state. The contro] input disables the circul

-

(¥ Scanned with OKEN Scanner

Secti
ons.3 Storage Flements: Latches 267

—0
En §

Next state of Q

Mo change

No change

O = 0; reset state
() = 1; set state
Indeterminate

—_———— =
| == o o x
—o — o X | X

(a) Logic diagram
(b) Function table

FIGURE 5.5
SR latch with control input

by apph;lgg 0;0 £n, s0 that the state of the output does not change regardless of the
values of 5 and R. Moreover, when En = 1 and both the § and R inputs are equal to 0
the state of the circuit does not ch iti ol T : ’

| : Change. These conditions are listed in the function table
accompanying the diagram.

. An mdete’rmmate cc_mdition occurs when all three inputs are equal to 1. This condi-
tion places 0’s on bloth inputs of the basic SR latch, which puts it in the undefined state.
When the enable input goes back to 0, one cannot conclusively determine the next
state, b_ecause it dep_venfis on whether the S or R input goes to 0 first. This indeterminate
condition makes this circuit difficult to manage, and it is seldom used in practice. Nev-
ertheless, the SR latch is an important circuit because other useful latches and flip-flops
are constructed from it.

Practice Exercise 5.2

(a) What input condition puts an SR NOR latch into an indeterminate state?
Answer: Both inputs are 1.

(b) What input condition puts an SR NAND latch into an indeterminate state?

Answer: Both inputs are 0.

D Latch (Transparent Latch)

One way to eliminate the undesirable condition of the indeterminate state in the SR
latch is to ensure that inputs § and R are never equal to 1 at the same time. This is done
in the D latch, shown in Fig. 5.6. This latch has only two inputs: D (data) and En (en'able).
The D input goes directly to the S input, and its complement is applied to the R input.
As long as the enable input is at 0, the cross-coupled SR latch has both inputs at the 1
level and the circuit cannot change state regardless of the value of D.The D input is
sampled when En = 1. If D = 1, the Q output goes (0 1, placing the circuit in the set
state. If D = 0, output Q goes to 0, placing the circuit in the reset state.

(¥ Scanned with OKEN Scanner

268 Chapter 5 Synchronous Sequential Logic

’ 1
. En D Ne"tstﬂteofg

En 0 X | No change' S
: ? QQ - 10 15t stay,
s O Pl 2o ____'_“i‘ Sfa_te

e

b) Functi
(a) Logic diagram (b) Function table

FIGURE 5.6
D latch

The D latch receives that designation from its ability to l.wld data_ln o, s
for binary information between 5 Unit

age. It is suited for use as a temporary storage :
and its environment. The binary information present at the data input of the D g}, is
transferred to the Q output when the enable input is asserted. The output follows changeg

in the data input as long as the enable input is assertfad. Thjs situation provides a paty,
from input D to the output, and for this reason, the circuit 1s often ca.lled a transparen;
latch. When the enable input signal is de-asserted, the binary information tha't Was pres-
ent at the data input at the time the transition of enable occurred is retz{med (i.e.,stored)
at the Q output until the enable input is asserted again.. Not'e th.at an mverter could be
placed at the enable input. Then, depending on the physical circuit, the external enabling
signal will be a value of 0 (active low) or 1 (active high).

The graphic symbols for the various latches are shown in Fig. 5.7 A latch is designated
by a rectangular block with inputs on the left and outputs on the right. One output des-
ignates the normal output, and the other (with the bubble designation) designates the
complement output. The graphic symbol for the SR latch has inputs S and R indicated
inside the block. In the case of a NAND gate latch, bubbles are added to the inputs to
indicate that setting and resetting occur with a logic-0 signal. The graphic symbol for the
D latch has inputs D and En indicated inside the block.

—1 s —as == D =
& R 0 — En "
oK 5k >
FIGURE 5.7 ;

Graphic symbols for latches

L

(¥ Scanned with OKEN Scanner

Section 5
3.4 Storage Elements: Flip-Flops 269

i —— N

-

practice Exercise 5.3
pescribe the functionality of a transparent jateh
: : atch.

Answer: A transparent late :
enable input is asierlcd Ih'cd;L:‘las ST sably lpet e opat SN S
’ put of the latch follows the input to the latch. When the

enable input is de-asserte
. P et lLd_1 the output of the latch is held at the value that w:
at the moment the enable input was de-asserted ‘ at the value that was present

——

é."f,____i_T—ORAGE ELEMENTS: FLIP-FLOPS
A change in the con_trol input of a latch or flip-flop switches its state. This momentary
change is called a frigger, and the transition it causes is said i fli Th
D latch with pulses in its control i : uses is sai to trigger the. ip-flop. The
: trol input is essentially a flip-flop that is triggered every
he pulse goes to the logic- . . ;
tme L pulse s e logic-1 level. As long as the pulse input remains af this level,
any changes in the data input will change the output and the state of the latch.

As seen from the bloc.k diagram of Fig. 5.2, a sequential circuit has a feedback path
from the/ouitpuls Of. the flip-flops to the input of the combinational circuit. Consequently.
the inputs of the flip-flops are derived in part from the outputs of the same and other
ﬂlp-ﬂops.V_\f!‘len latches are used for the storage elements, a serious difficulty arises. The
state transitions of the latches start as soon as the clock pulse changes to the logic-1
level. T!'le new state of a latch appears at the output while the pulse is still active. This
outputis connected to the inputs of the latches through the combinational circuit. If the
inputs applied to the latches change while the clock pulse is still at the logic-1 level, the
latches will respond to new values and a new output state may occur. The result is an
unpredictable situation, since the state of the latches may keep changing for as long as
the clock pulse stays at the active level. Because of this unreliable operation, the output
of a latch cannot be applied directly or through combinational logic to the input of the
same or another latch when all the latches are triggered by a common clock source.

Flip-flop circuits are constructed in such a way as (o make them operate properly
when they are part of a sequential circuit that employs a common clock. The problem
with the latch is that it responds to a change in the level of a clock pulse. As shown
in Fig, 5.8(a), a positive level response in the enable input allows changes in the out-
put when the D input changes while the clock pulse stays at logic L The key to the
proper operation of a flip-flop is 10 trigger it only during a signal transition. This can be
accomplished by climinating the feedback path that is inherent in the ‘opera.tion of the
sequential circuit using latches. A clock pulse goes through two transitions: from Otol
and the return from 1 to 0. As shown in Fig. 5.8, the positive transition is defined as the
positive edge and the negative transition as the negative edge. There are two ways that
a latch can be modified to forma flip-flop. One way is to employ two latches' in a special
configuration that isolates the output of the flip-flop and prevents it from being affected
while the input to the flip-flop is changing. Another way 1s to produce flip-flop that

triggers only during a signal transition (from 0 to 1 or from | to 0) of the synchronizing

(¥ Scanned with OKEN Scanner

270 Chapter 5 Synchronous Sequential Logic

| g g

(a) Response 10 positive level

(b) Positive-edge response

gy

- (¢) Negative-edge response

=t

FIGURE 5.8
Clock response in latch and flip-flop

signal (clock) and is disabled during the rest of the clock pulse. We will now proceeg to
show the implementation of both types of flip-flops.

Edge-Triggered D Flip-Flop

The construction of a D flip-flop with two D latches and an inverter is shown in Fig, 59,
It is often referred to as a master-slave flip-flop. The first latch is called the master ang
the second the slave. The circuit samples the D input and changes its output Q only at the
negative edge of the synchronizing or controlling clock (designated as Clk). When Clk s
0. the output of the inverter is 1. The slave latch is enabled, and its output Q is equal to
the master output Y. The master latch is disabled because Clk = 0. When the input (Clk)
pulse changes to the logic-1 level, the data from the external D input are transferred to
the master. The slave, however, is disabled as long as the clock remains at the 1 level.
because its enable input is equal to 0. Any change in the input changes the master output
at ¥, but cannot affect the slave output. When the clock pulse returns to 0, the master is
disabled and is isolated from the D input. At the same time, the slave is enabled and the
value of Y is transferred to the output of the flip-flop at Q. Thus, a change in the ouipil
of the flip-flop can be triggered only by and during the transition of the clock from 110 0.

Bl Y D 0
D latch D latch
(master o
En) - (slave)

Clk 4[>0

FIGURE 5.9
Master—slave D flip-flop

(¥ Scanned with OKEN Scanner

Secti
ction 5.4 Storage Elements: Flip-Flops 271

The behavior of the master— i .
may change only once, (2) a chiql::;z ?Illpl‘hﬂeOPJUSl dfascr.ibed dictates that (1) the output
the clock, and (3) the change may occur op| 0; tput is triggered by the negative edge of
hat is produced at the output of the fi y during the clock’s negative level. The value
e diately befor ¥ g flip-flop is the value that was stored in the master
stage tmme ime?_’ gf ore the negative edge occurred, 1t js also possible to design the cir-
cutso o ﬂ,lp-ﬂop Olltp-u.l changes on the positive edge of the clock. This happens
in a flip-flop that h-as an Elddllloonal inverter between the Clk terminal and the junction
between the}other inverter and input En of the master latch, Such a flip-flop is triggered
with ’ negative pulse, so that the negative edge of the clock affects the master and the
positive edge affects the slave and the output terminal
ﬁfnother construction of an edge-triggered D flip-flop uses three SR latches as shown
in Fig. 5.10. Two latches respond to the external D (data) and Clk (clock) inputs. The
third latch provides the outputs for the flip-flop. The § and R inputs of the output latch
are maintained at the logic-1 level when Clk = 0, This causes the output to remain in its
presentostate. Input D-may be equal to 0 or 1.If D = 0 when Clk becomes 1, R changes
to O.ThlS.CElllSCS tl}e flip-flop to go to the reset state, making Q = 0. If there is a change
in the D input while Clk = 1, terminal R remains at 0 because Q is 0. Thus, the flip-flop
is locked out and is unresponsive to further changes in the input. When the clock returns
to 0, R goes to 1, placing the output latch in the quiescent condition without changing
the output. Similarly, if D = 1 when Clk goes from 0 to 1, S changes to 0. This causes
the circuit to go to the set state, making Q = 1. Any change in D while Clk = 1 does
not affect the output.

(e}

Clk—————%

%\ DAY

FIGURE 5.10
D-type positive-edge-triggered flip-flop

(¥ Scanned with OKEN Scanner

q - " .2 l I g'

i 5
2 Llh‘if’{cr .
2! - F/___ e D
- ’"’"ﬁ
e dSOR e ——
e AN 3 —
I (b) Negative-edge
(a) Positive-cdge
FIGURE 5.11 triggered D flip-flop

Graphic S*I‘!'I["(_ll for Cdge-
v -triggered flip-flop makes q Diisin
1e posill e-edge-1rigger fl i,

° ition of the clock (j.¢
- negatlve trans ; “My fr()m
e) D is transferred to Q- A by changes in D w
transition, the value 0{ 131: outp‘fts nor is the output affeCt.(‘JC:); o ﬂi%) flop res hen Cli
E 3 D; agscl level or the logic-0 level. Hence, this typ Ponds
is in the steady logic-

- thing else.
It SO frf g:eo,.g;oizg gfo a ﬂi;?—ﬂop to input data gnd t%ﬁ:::i?‘f must be tak,,
The timing O e i d flip-flops. minimum tjp,
: S ne edge-triggere o
into conmderaﬁop “h;n Pne‘:;?;l; tie 1% input must be mamt_amed .at- a consotant valye
B ition. Similarly, there 1s a minimum time calleg

- f the clock trans! § - s
e hold e ficurmi;egn:fehjcéh the D input must not change after the application of the pog;.
the

tive transition of the clock. The propagation c_iglay-time of the ﬂlp;fiop is defined as the
interval between the trigger edge and the stabilization of the output to a.gew st.ate. T}}?Se
and other parameters are specified in manufacture.rs’ data_ books fo.r SP?ClﬁC 10810_ fﬁ{Jll!le&

The graphic symbol for the edge-triggered D flip-flop is shown in Fig.5.11. I_t 18 similar
to the symbol used for the D latch, except for the arrowhead-like symbol in front of
the letter Clk, designating a dynamic input. The dynamic indicator (>) denotes the fact
that the flip-flop responds to the edge transition of the clock. A bubble outside the block
adjacent to the dynamic indicator designates a negative edge for triggering the circuit,
The absence of a bubble designates a positive-edge response.

In sum, when the input clock in th

Practice Exercise 5.4
What is meant by “a positive-edge flip-flop?”

Answer: A positive-edge flip-flop is one that is acti Sl ‘e
1vat e
of the clock (synchronizing signal), ed by the rising (positive) edg
-—_-__-_-_'_‘—-——____
: LA —t

Other Flip-Flops

Very large-scale integrated cireu;
grated circuitg contaj
age. Circuits are co : 4In severa] thousands of ithi e pack-
tal system., Each fli;i;?; li(:dcby mtemo““ecﬁng the varioys gagtitse?c:v lt:lolgigg apdigi-
economical ang effcicen 4 (}?structed from ap interconnecti f i The most
P-tlop constrycge in this mapp 911?] ga;rles. i gered
€r is the e ge-trig

(¥ Scanned with OKEN Scanner

Il

B
:D——D g — —
58—

Section 5.4 Storage Elements: Flip-Flops 273

p flip-flop, because it requires the smallest number of gates. Other types of flip-flops
can be conslrugted by using the D flip-flop and external logic. Two flip-flops less widely
used in the design of d1gxl'f1l systems are the JK and 7T flip-flops.

There are three operations that can be performed with a flip-flop: Set it to 1, reset
it to 0, or complement its output. With only 4 single input, the D flip-flop can set or
eset the output, dCI?CIldlllg on the value of the p input immediately before the clock
(ransition. Synchromzecl by a clock signal, the JK flip-flop has two inputs and performs
all three operations. The circuit diagram of a JK flip-flop constructed with a D flip-flop
and gates is shown in Fig. 5.12(a). The J input sets the flip-flop to 1, the K input resets it
to0,and whep both in.puts are enabled, the output is complemented. This can be verified
by investigating the circuit applied to the D input:

D=1JQ" +K'Q

when/ = 1andK = 0,D = Q" + Q = 1,50 the next clock edge sets the output to 1.
When J = 0 and K = 1, D = 0, so the next clock edge resets the output to 0. When
bothJ = K = 1and D = Q' the next clock edge complements the output. When both
J=K=0and D = Q, the clock edge leaves the output unchanged. The graphic sym-
pol for the JK flip-flop is shown in Fig. 5.12(b). It is similar to the graphic symbol of the
D flip-flop, except that now the inputs are marked J and K.

The T (toggle) flip-flop is a complementing flip-flop and can be obtained from a
JK flip-flop when inputs J and K are tied together. This is shown in Fig. 5.13(a). When
T = 0 (J = K = 0),aclock edge does not change the output. When 7 = 1 (/ = K = 1),
a clock edge complements the output. The complementing flip-flop is useful for design-
ing binary counters.

The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as
shown in Fig. 5.13(b). The expression for the D input is

D=T@®Q=T0"+T7Q

k—>o—— —> Clk
Clk—>Clk P g —EK -
(a) Circuit diagram (b) Graphic symbol
FIGURE 5.12
JK flip-flop

(¥ Scanned with OKEN Scanner

—
' L pe— r"f st —T
T ——{7 Samea— — - \\
—> Clk |
| | R P ik -
— I\ | — -_--h‘-“-“
) T TK flip-flop (b) From D flip-flop (¢) Graphic $Ymbo
(a) From. .
FIGURE 5.13
T flip-flop

change in the output. When T =1,D = o,

bol for this flip-flop has a T'symbol in the inand

When 7 = 0, D = Q and there is no
put,

the output complements. The graphic sym

Characteristic Tables
A characteristic table defines the logical properties of a flip-flop b-y describing its opers.
tion in tabular form. The characteristic tables of three types of flip-flops are Presenteg
in Table 5.1. They define the next state (i.e., the state that results from a clock transition)
as a function of the inputs and the present state. Q(¢) refers to the Present state (i, the
state present prior to the application of a clock edge). Q(r + 1) is the next state gpe
clock period later. Note that the clock edge input is not included in the characterigg;,
table, but is implied to occur between times ¢ and ¢ + 1. Thus, Q(#) denotes the state
of the flip-flop immediately before the clock edge, and Q(f + 1) denotes the state that

results from the clock transition.

Table 5.1
Flip-Flop Characteristic Tables
JK Flip-Flop
J K Qit+1)
0 0 |00 No change
0 1|0 Reset
1 0 |1 Set
REE. Q0 Complement
DFlip-Flop T Flip-Flop
Dla+1) Tlaet+ 1)
5 I P) R
i | ;:SP‘I 0 1Q() Nochange
' 1'10'() Complement

(¥ Scanned with OKEN Scanner

Secti
ection 5.4 Storage Elements: Flip-Flops 275

’ present state, sition t
o +1) = Q') €, a transition that can be expressed as

The next sltate of a D flip-flop is dependent on only the D input and is independent
of the presen state. This can be expressed as Q(t + 1) = D. It means that the next-state
valuc. l.s *qual to;the val} l? of D. Note that the D ﬂip'ﬂop does not have a “no-change”
coﬂd“.l_(‘“- Such a condition can be accomplished either by disabling the clock or by
operating the clock b}’ havu.lg the output of the flip-flop connected into the D input.
Either method e[fe_ctwely circulates the output of the flip-flop when the state of the
flip-flop must remain unchanged.

The characteristic table of the T flip-flop has only two conditions: When T = 0, the
clock edge does not change the state; when T

: = 1, the clock edge complements the
state of the flip-flop.

Characteristic Equations

The logical properties of a flip-flop, as described in the characteristic table, can be

expressed algebraically with a characteristic equation. For the D flip-flop, we have the
characteristic equation

Q(r+.1)=D

which states that the next state of the output will be equal to the value of input D in the

present state. The characteristic equation for the JK flip-flop can be derived from the
characteristic table or from the circuit of Fig. 5.12. We obtain

Ot+1)=JQ'+K'Q

where Q is the value of the flip-flop output prior to the application of a clock edge. The
characteristic equation for the T flip-flop is obtained from the circuit of Fig. 5.13:

ot+1)=T@QO=TQ'+T'Q
Direct Inputs

Some flip-flops have asynchronous inputs that are used to force the flip-flop to a par-
ticular state independently of the clock. The input that sets the flip-flop to 1 is called
preset or direct set. The input that clears the flip-flop to 0 is called clear or direct reset.
When power is turned on in a digital system, the state of the flip-flops is unknown. The
direct inputs are useful for bringing all flip-flops in the system to a known starting state
prior to the clocked operation.

A positive-edge-triggered D flip-flop with active-low asynchronous reset is shown in
Fig.5.14. The circuit diagram is the same as the one in Fig. 5.10, except for the additional

(¥ Scanned with OKEN Scanner

Computer Organization Module3

Basic Structure of Computers
&
Machine Instructions and Programs

TOPIC: Basic Structure of Computers: Basic Operational Concepts, Bus Structures,
Performance —Processor Clock, Basic Performance Equation, Clock Rate, Performance
Measurement. Machine Instructions and Program: Memory Location and Addresses
Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly
Language, Basic Input and Output Operations, Stacks and Queues, Subroutines, Additional
Instructions, Encoding of Machine Instructions

1. BASIC OPERATIONAL CONCEPT:

The program to be executed is stored in memory. Instructions are accessed from memory to the
processor one by one and executed.
STEPS FOR INSTRUCTION EXECUTION
Consider the following instruction
Ex:1 Add LOCA, Ro

This instruction is in the form of the following instruction format
Opcode Source, Source/ Destination

Where Add is the operation code, LOCA is the Memory operand and Ro is Register operand
This instruction adds the contents of memory location LOCA with the contents of Register Ro and
the result is stored in Ro Register.
The symbolic representation of this instruction is

Ro «—[LOCA] + [Ro]

The contents of memory location LOCA and Register Ro before and after the execution of this
instruction is as follows

Before instruction execution After instruction execution
LOCA = 23H LOCA = 23H
Ro = 22H Ro = 45H

The steps for instruction execution are as follows

Fetch the instruction from memory into the IR (instruction register in CPU).
Decode the instruction 1111000000 10011010

Access the first Operand

Access the second Operand

Perform the operation according to the Opcode (operation code).

Store the result into the Destination Memory location or Destination Register.

ok wdPE

Computer Organization Module3

Ex:2 Add R1, Rz, Rz (3 address instruction format)

This instruction is in the form of the following instruction format
Opcode, Source-1, Source-2, Destination

Where R1 is Source Operand-1, R2 is the Source Operand-2 and R3 is the Destination. This
instruction adds the contents of Register R1 with the contents of R2 and the result is placed in R3
Register.
The symbolic representation of this instruction is

R3<+— [R1] + [R2]
The contents of Registers R1,R2,R3 before and after the execution of this instruction is as follows.

Before instruction execution After instruction execution
R1 = 24H R1 = 24H
R2 = 34H R2 = 34H
R3 = 38H R3 =58H

The steps for instruction execution is as follows

Fetch the instruction from memory into the IR.

Decode the instruction

Access the First Operand R1

Access the Second Operand R2

Perform the operation according to the Operation Code.
Store the result into the Destination Register R3.

o arwnE

CONNECTION BETWEEN MEMORY AND PROCESSOR

The connection between Memory and Processor is as shown in the figure.
The Processor consists of different types of registers.

MAR (Memory Address Register)

MDR (Memory Data Register)

Control Unit

PC (Program Counter)

General Purpose Registers

IR (Instruction Register)

ALU (Arithmetic and Logic Unit)

No abkohde

Computer Organization Module3
Memory
N N
MAR MDR
Control
PC Ry
H ==— Processor
m -
' ALU
_ Ro_r
-nt general parpose
registers
The functions of these registers are as follows
1. MAR
It establishes communication between Memory and Processor
. It stores the address of the Memory Location as shown in the figure.
MAR Memory
5000h | > 5000 [23h
5001 | 43h
5002 | 78h
5003 | 65h
2. MDR
It also establishes communication between Memory and the Processor.
. It stores the contents of the memory location (data or operand), written into or read from
memory as shown in the figure.
MDR Memory
23N 23h 5000
43h 5001
78h 5002
65h 5003
3. CONTROL UNIT
. It controls the data transfer operations between memory and the processor.
" It controls the data transfer operations between /O and processor.

. It generates control signals for Memory and 1/O devices.

Computer Organization Module3

4. PC (PROGRAM COUNTER)

>

>

>

It is a special purpose register used to hold the address of the next instruction to be
executed.

The contents of PC are incremented by 1 or 2 or 4, during the execution of current
instruction.

The contents of PC are incremented by 1 for 8 bit CPU, 2 for 16 bit CPU and for 4 for 32
bit CPU.

GENERAL PURPOSE REGISTER / REGISTER ARRAY
The structure of register file is as shown in the figure

Ro
R1
R2

Rn-l

It consists of set of registers.

A register is defined as group of flip flops. Each flip flop is designed to store 1 bit of
data.

It is a storage element.

It is used to store the data temporarily during the execution of the program(eg: result).
It can be used as a pointer to Memory.

The Register size depends on the processing speed of the CPU

EX: Register size = 8 bits for 8 bit CPU

IR (INSTRUCTION REGISTER
It holds the instruction to be executed. It notifies the control unit, which generates timing

signals that controls various operations in the execution of that instruction.

6.

ALU (ARITHMETIC and LOGIC UNIT)
It performs arithmetic and logical operations on given data.

Steps for fetch the instruction

PC contents are transferred to MAR

Read signal is sent to memory by control unit.

The instruction from memory location is sent to MDR.
The content of MDR is moved to IR.

[PC] > MAR ———» Memory = MDR - IR
CU (read signal)

Computer Organization Module3

2. BUS STRUCTURE

Bus is defined as set of parallel wires used for data communication between different parts of
computer. Each wire carries 1 bit of data. There are 3 types of buses, namely

1. Address bus

2. Data bus and

3. Control busl.
1. Address bus :

" It is unidirectional.
" The processor (CPU) sends the address of an 1/0O device or Memory device by means of
this bus.
2. Data bus
It is a bidirectional bus.
. The CPU sends data from Memory to CPU and vice versa as well as from 1/0 to CPU

and vice versa by means of this bus.

3. Control bus:

" This bus carries control signals for Memory and 1/O devices. It generates control signals
for Memory namely MEMRD and MEMWR and control signals for 1/0 devices namely IORD
and IOWR.

The structure of single bus organization is as shown in the figure.

Inpat Output Memory Processor

e,

Ly
R
- —F
"
e
e
S—
B

Y NN
{— Y
. The 1/0 devices, Memory and CPU are connected to this bus is as shown in the figure.
. It establishes communication between two devices, at a time.

Features of Single bus organization are
> Less Expensive
» Flexible to connect 1/0 devices.
» Poor performance due to single bus.
There is a variation in the devices connected to this bus in terms of speed of operation.
Few devices like keyboard, are very slow. Devices like optical disk are faster. Memory and
processor are faster, but all these devices uses the same bus. Hence to provide the synchronization

Computer Organization Module3

between two devices, a buffer register is attached to each device. It holds the data temporarily
during the data transfer between two devices.

3. PERFORMANCE

Basic performance Equation

e The performance of a Computer System is based on hardware design of the processor and
the instruction set of the processors.

e To obtain high performance of computer system it is necessary to reduce the execution
time of the processor.

e Execution time: It is defined as total time required executing one complete program.

e The processing time of a program includes time taken to read inputs, display outputs,
system services, execution time etc.

e The performance of the processor is inversely proportional to execution time of the
processor.

More performance = Less Execution time.

Less Performance = More Execution time.

The Performance of the Computer System is based on the following factors
Cache Memory

Processor clock

Basic Performance Equation

Instructions

Compiler

ok

CACHE MEMORY: It is defined as a fast access memory located in between CPU and
Memory. It is part of the processor as shown in the fig

|

— ~

<

The processor needs more time to read the data and instructions from main memory
because main memory is away from the processor as shown in the figure. Hence it slowdown the
performance of the system.

The processor needs less time to read the data and instructions from Cache Memory
because it is part of the processor. Hence it improves the performance of the system.

Computer Organization Module3

PROCESSOR CLOCK: The processor circuits are controlled by timing signals called as Clock.
It defines constant time intervals and are called as Clock Cycles. To execute one instruction there
are 3 basic steps namely

1. Fetch
2. Decode
3. Execute.
The processor uses one clock cycle to perform one operation as shown in the figure
Clock Cycle — T1 T2 T3

Instruction — Fetch Decode Execute
The performance of the processor depends on the length of the clock cycle. To obtain high
performance reduce the length of the clock cycle. Let ¢ P * be the number of clock cycles generated
by the Processor and ‘ R * be the Clock rate .

The Clock rate is inversely proportional to the number of clock cycles.
ie R=1/P.
Cycles/second is measured in Hertz (Hz). Eg: 500MHz, 1.25GHz.

Two ways to increase the clock rate —
» Improve the IC technology by making the logical circuit work faster, so that the time taken
for the basic steps reduces.
> Reduce the clock period, P.

BASIC PERFORMANCE EQUATION

Let ‘T ° be total time required to execute the program.

Let ‘N ° be the number of instructions contained in the program.

Let * S * be the average number of steps required to execute one instruction.

Let * R’ be number of clock cycles per second generated by the processor to execute one
program.

Processor Execution Time is given by
T=N*S/R
This equation is called as Basic Performance Equation.
For the programmer the value of T is important. To obtain high performance it is necessary to
reduce the values of N & S and increase the value of R

Performance of a computer can also be measured by using benchmark programs.

SPEC (System Performance Evaluation Corporation) is an non-profitable organization, that
measures performance of computer using SPEC rating. The organization publishes the application
programs and also time taken to execute these programs in standard systems.

Running time of reference Computer

SPEC =

Running time of computer under test

Computer Organization Module3

DIFFERENCES MULTIPROCESSOR AND MULTICOMPUTER

MULTIPROCESSOR MULTICOMPUTER
1. Interconnection of two or more | Interconnection of two or more computers
processors by means of system bus. by means of cables.
2. It uses common memory to hold the data | It has its own memory to store data and
and instructions. instructions.
3. Complexity in hardware design. Not much complexity in hardware design.
4. Difficult to program for multiprocessor | Easy to program for multiprocessor system
system.

4. MEMORY LOCATIONS AND ADDRESSES

1. Memory is a storage device. It is used to store character operands, data operands and
instructions.
2. It consists of number of semiconductor cells and each cell holds 1 bit of information. A
group of 8 bits is called as byte and a group of 16 or 32 or 64 bits is called as word.
World length = 16 for 16 bit CPU and World length = 32 for 32 bit CPU. Word length is defined
as number of bits in a word.
e Memory is organized in terms of bytes or words.
e The organization of memory for 32 bit processor is as shown in the fig.

|——— nhits ————}

e first word

= second word

et -th word

The contents of memory location can be accessed for read and write operation. The memory is
accessed either by specifying address of the memory location or by name of the memory location.

Computer Organization Module3

o Address space : It is defined as number of bytes accessible to CPU and it depends on the
number of address lines.

5. BYTE ADDRESSABILITY

Each byte of the memory are addressed, this addressing used in most computers are called byte
addressability. Hence Byte Addressability is the process of assignment of address to successive
bytes of the memory. The successive bytes have the addresses 1, 2, 3, 4............. 2"-1. The
memory is accessed in words.

In a 32 bit machine, each word is 32 bit and the successive addresses are 0,4,8,12,... and

SO on.
Address 32 — bit word
0000 0" byte 1% byte 2" byte 3 byte
0004 4" byte 5™ byte 6" byte 7" byte
0008 8" byte 9" byte 10™ byte 11" byte
0012 12" pyte 13" byte 14" byte 15" byte
n-3 n-3" byte n-2" byte n-1" byte n" byte

BIG ENDIAN and LITTLE ENDIAN ASSIGNMENT

Two ways in which byte addresses can be assigned in a word.
Or
Two ways in which a word is stored in memory.

1. Bigendian

2. Little endian

BIG ENDIAN ASSIGNMENT

Waandd

address Byiie address
o o 1 2 3
4 “ 5 & 7
2% _ 4 24 | 2% _a "2t | 2% i
1]

In this technique lower byte of data is assigned to higher address of the memory and higher
byte of data is assigned to lower address of the memory.

Computer Organization Module3

The structure of memory to represent 32 bit number for big endian assignment is as shown in the
above figure.

LITTLE ENDIAN ASSIGNMENT

In this technique lower byte of data is assigned to lower address of the memory and higher byte
of data is assigned to higher address of the memory.
The structure of memory to represent 32 bit number for little endian assignment is as shown in
the fig.

Byte address
a 3 2 1 L
4 T & 5]

Eg — store a word “JOHNSENA” in memory starting from word 1000, using Big Endian
and Little endian.

Bigendian -
1000 J 0] H N
1000 | 1001 | 1002 | 1003

1004 | S E N A
1004 | 1005 | 1006 | 1007

Little endian -
1000 N H (0] J
1000 | 1001 | 1002 | 1003

1004 | A N E S
1004 | 1005 | 1006 | 1007

WORD ALLIGNMENT
Word is the group of bytes in memory. Number of bits in a word is the word length.
Eg — 32-bit word length, 64-bit word length etc.

The word locations of memory are aligned, if they begin with the address, which is multiple of
number of bytes in a word.

Computer Organization Module3

The structure of memory for 16 bit CPU, 32 bit CPU and 64 bit CPU are as shown in the figures
1,2 and 3 respectively

For 16 bit CPU For 32 bit CPU For 64 bit CPU
4000 34H 4000 34H 4000 34H
4002 65H 4004 65H 4008 65H
4004 86H 4008 86H 4016 86H
4006 93H 4012 93H 4024 93H
4008 45H 4016 45H 4032 45H
(Here, no. of bytes of a (Here, no. of bytes of a (Here, no. of bytes of a
word is 2, and the word is 4, and the word is 8, and the
address of word is in address of word is in address of word is in
multiples of 2) multiples of 4) multiples of 8)

ACCESSING CHARACTERS AND NUMBERS

The character occupies 1 byte of memory and hence byte address for memory.
The numbers occupies 2 bytes of memory and hence word address for numbers.

. MEMORY OPERATION

Both program instructions and operands are in memory.
To execute an instruction, each instruction has to be read from memory and after execution the
results must be written to memory.

There are two types of memory operations namely 1. Memory read and 2. Memory write
Memory read operation [Load/ Read / Fetch]
Memory write operation [Store/ write]

1. MEMORY READ OPERATION:

It is the process of transferring of 1 word of data from memory into Accumulator (GPR).
It is also called as Memory fetch operation.

The Memory read operation can be implemented by means of LOAD instruction.

The LOAD instruction transfers 1 word of data (1 word = 32 bits) from Memory into the
Accumulator as shown in the fig.

ANER NI NERN

Memory(32 bits)
Accumulator

_ 5004
32 bits 5008
5012
5016
5020

Computer Organization Module3

Steps for Memory Read Operation

(1) The processor loads MAR (Memory Address Register) with the address of the memory
location.

(2) The Control unit of processor issues memory read control signal to enable the memory
component for read operation.

(3) The processor reads the data from memory into the MDR (Memory Data Register) by means
of bi-directional data bus.

[MAR] - Memory > MDR

2. MEMORY WRITE OPERATION

e Itis the process of transferring the 1 word of data from Accumulator into the Memory.
e The Memory write operation can be implemented by means of STORE instruction.
The STORE instruction transfers 1 word of data from Accumulator into the Memory

location as shown in the fig.
Memory (32 bits)

Accumulator
5000

] oo

32 bits 5008

5012
5016
5020

A\ 4

Steps for Memory Write Operation
e The processor loads MAR with the address of the Memory location.
The processor loads MDR with the data to be stored in Memory location.
The Control Unit issues the Memory Write control signal.
e The processor transfers 1 word of data from MDR to Memory location by means of bi-
directional data bus.

Computer Organization Module3

7. COMPUTER OPERATIONS (OR) INSTRUCTIONS AND
INSTRUCTION EXECUTION

The Computer is designed to perform 4 types of operations, namely

. Data transfer operations

o ALU Operations

o Program sequencing and control.
J I/O Operations.

1. Data Transfer Operations
a) Data transfer between two registers.

Format: Opcode Sourcel, Destination
The processor uses MOV instruction to perform data transfer operation between two registers
The mathematical representation of this instruction is R1 — R2.
Ex: MOV R:1,R2 : R1 and R2 are the registers.
Where MOV is the operation code, R1 is the source operand and R2 is the destination operand.
This instruction transfers the contents of R1 to R2.
EX: Before the execution of MOV R1,R2, the contents of R1 and R2 are as follows
R1=34h and R2=65h
After the execution of MOV R1, R2, the contents of R1 and R2 are as follows
R1=34H and R2=34H

b) Data transfer from memory to register
The processor uses LOAD instruction to perform data transfer operation from memory to
register. The mathematical representation of this instruction is
ACC «[LOCA]. Where ACC is the Accumulator.
Format: opcode operand
Ex: LOAD LOCA
For this instruction Memory Location is the source and Accumulator is the destination.

c) Data transfer from Accumulator register to memory
The processor uses STORE instruction to perform data transfer operation from Accumulator
register to memory location. The mathematical representation of this instruction is
LOCA «—[ACC]. Where, ACC is the Accumulator.
Format: opcode operand
Ex: STORE LOCA
For this instruction accumulator is the source and memory location is the destination.

2. ALU Operations

The instructions are designed to perform arithmetic operations such as Addition,
Subtraction, Multiplication and Division as well as logical operations such as AND, OR
and NOT operations.

Computer Organization Module3

3.

Ex1: ADD Ro, Ry
The mathematical representation of this instruction is as follows:
Ri1— [Ro] + [R1]; Adds the content of Ro with the content of Ry and result is placed in R:.

Ex2: SUB Ro, R1
The mathematical representation of this instruction is as follows:

Ri<— [Ro] - [R1] ; Subtracts the content of Ro from the content of Ry and result is placed
in Ri.

EX3: AND Ro, Ry ; It Logically multiplies the content of Ro with the content of R and
result is stored in R1. (R1= Ro AND R1)

I/0 Operations: The instructions are designed to perform INPUT and OUTPUT operations.
The processor uses MOV instruction to perform 1/0 operations.

The input Device consists of one temporary register called as DATAIN register and
output register consists of one temporary register called as DATAOUT register.
a) Input Operation: It is a process of transferring one WORD of data from DATA IN
register to processor register.

Ex: MOV DATAIN, RO
The mathematical representation of this instruction is as follows,

Ro— [DATAIN]
b) Output Operation: It is a process of transferring one WORD of data from processor
register to DATAOUT register.

Ex: MOV Ro, DATAOUT
The mathematical representation of this instruction is as follows,

[Ro]— DATAOUT

REGISTER TRANSFER NOTATION
There are 3 locations to store the operands during the execution of the program namely

1.

Register 2. Memory location 3. I/O Port. Location is the storage space used to store the data.
The instructions are designed to transfer data from one location to another location.

Eg 1 - Consider the first statement to transfer data from one location to another location
“ Transfer the contents of Memory location whose symbolic name is given by AMOUNT into

processor register Ro.”

The mathematical representation of this statement is given by

Ro < [AMOUNT]

Eg 2 -Consider the second statement to add data between two registers
“Add the contents of Ro with the contents of R1 and result is stored in Ry”
The mathematical representation of this statement is given by

R2 «—[Ro] + [R1].

Such a notation is called as “Register Transfer Notation”.
It uses two symbols

1. A pair of square brackets [] to indicate the contents of Memory location and
2. < to indicate the data transfer operation.

Computer Organization Module3

ASSEMBLY LANGUAGE NOTATION
Consider the first statement to transfer data from one location to another location
“Transfer the contents of Memory location whose symbolic name is given by AMOUNT into
processor register Ro.”
The assembly language notation of this statement is given by
MOV AMOUNT, Ro
Opcode Source Destination
This instruction transfers 1 word of data from Memory location whose symbolic name is given by
AMOUNT into the processor register Ro.
The mathematical representation of this statement is given by
Ro < [AMOUNT]

Consider the second statement to add data between two registers
“Add the contents of Ro with the contents of Ry and result is stored in R2”
The assembly language notation of this statement is given by

ADD Ro, Ry, R2
Opcode sourcel, Source2, Destination

This instruction adds the contents of Ro with the contents of Ry and result is stored in Rz,
. The mathematical representation of this statement is given by
R2 «[Ro] + [R1].
Such a notations are called as “Assembly Language Notations”

BASIC INSTRUCTION TYPES
There are 3 types of basic instructions namely

1. Three address instruction format
2. Two address instruction format
3. One address instruction format

Consider the arithmetic expression Z = A + B, Where A,B,Z are the Memory locations.
Steps for evaluation

Access the first memory operand whose symbolic name is given by A.

Access the second memory operand whose symbolic name is given by B.

Perform the addition operation between two memory operands.

Store the result into the 3 memory location Z.

The mathematical representation is Z «J[A] + [B].

arwdeE

a) Three address instruction format : Its format is as follows
| opcode | Source-1 | Source-2 | destination

Destination « [source-1] + [source-2]
Ex: ADD A,B,Z
Z «—[A] +[B]

Computer Organization Module3

a) Two address instruction format : Its format is as follows

| opcode | Source | Source/destination

Destination < [source] + [destination]
The sequence of two address m/c instructions to evaluate the arithmetic expression
Z — A+ B are as follows
MOV A, Ro
MOV B, R:
ADD Ro R:
MOV Ry, Z
b) One address instruction format : Its format is as follows

| opcode operand

Ex1: LOAD B
This instruction copies the contents of memory location whose symbolic name is given
by ‘B’ into the Accumulator as shown in the figure.
The mathematical representation of this instruction is as follows
ACC « [B]

Accumulator Memory

Ex2: STORE B

This instruction copies the contents of Accumulator into memory location whose
symbolic name is given by ‘B’ as shown in the figure. The mathematical representation is as
follows

B «— [ACC].
Memory
Accumulator
L]]
Ex3: ADD B

o This instruction adds the contents of Accumulator with the contents of Memory
location ‘B’ and result is stored in Accumulator.

o The mathematical representation of this instruction is as follows

ACC «[ACC]+ [B]

Computer Organization Module3

STRIGHT LINE SEQUENCING AND INSTRUCTION EXECUTION

Consider the arithmetic expression
C = A+B, Where A,B,C are the memory operands.
The mathematical representation of this instruction is
C=[A] +[B].
The sequence of instructions using two address instruction format are as follows
MOV A, Ro
ADD B, Ro
MOV Ro C
Such a program is called as 3 instruction program.
NOTE: The size of each instruction is 32 bits.
o The 3 instruction program is stored in the successive memory locations of the
processor is as shown in the fig.

Address Contents
Begin exccotion here —== Move ARD . .
3-ipstruction
i+4 Add BRO program
Segment
i+8 Move ROC
A -—
. Data for
B the program
[-

e The system bus consists of uni-directional address bus,bi-directional data bus and control bus
“It is the process of accessing the 1% instruction from memory whose address is stored in program
counter into Instruction Register (IR) by means of bi-directional data bus and at the same time
after instruction access the contents of PC are incremented by 4 in order to access the next
instruction. Such a process is called as “Straight Line Sequencing”.

INSTRUCTION EXECUTION
There are 4 steps for instruction execution
1 Fetch the instruction from memory into the Instruction Register (IR) whose address
is stored in PC.
IR —[[PC]]

Computer Organization Module3

2 Decode the instruction.
3 Perform the operation according to the opcode of an instruction
4 Load the result into the destination.
5 During this process, Increment the contents of PC to point to next instruction (In
32 bit machine increment by 4 address)
PC « [PC] + 4.
6 The next instruction is fetched, from the address pointed by PC.

BRANCHING

Suppose a list of ‘N’ numbers have to be added. Instead of adding one after the other, the
add statement can be put in a loop. The loop is a straight-line of instructions executed as many
times as needed.

Move N.RI
Clear RO

| Determine address of
-~ "Next” number and add -
Program “Mext™ number o RO

L

et N

Decrement Ri
Branch>) LOOP
Move RO,5UM

sUM

NUMI
NIUM2

NUMn

The ‘N’ value is copied to R1 and R1 is decremented by 1 each time in loop. In the loop find the
value of next elemet and add it with Ro.

In conditional branch instruction, the loop continues by coming out of sequence only if
the condition is true. Here the PC value is set to ‘LLOP’ if the condition is true.

Branch >0 LOOP /l'if >0 go to LOOP

The PC value is set to LOOP, if the previous statement value is >0 ie. after decrementing R1 value
is greater than 0.

Computer Organization Module3

If R1 value is not greater than 0, the PC value is incremented in a mormal sequential way and the
next instruction is executed.

CONDITION CODE BITS
e The processor consists of series of flip-flops to store the status information after ALU
operation.
o It keeps track of the results of various operations, for subsequent usage.
e Theseries of flip-flip-flops used to store the status and control information of the processor
is called as “Condition Code Register”. It defines 4 flags. The format of condition code register
is as follows.

c [v [z [N |

1 N (NEGATIVE) Flag:
It is designed to differentiate between positive and negative result.
Itis set 1 if the result is negative, and set to O if result is positive.
2 Z (ZERO) Flag:
It is set to 1 when the result of an ALU operation is found to zero, otherwise it is cleared.
3 V (OVER FLOW) Flag:

In case of 2° Complement number system n-bit number is capable of representing a
range of numbers and is given by -2"* to +2"% . The Over-Flow flag is set to 1 if the result
is found to be out of this range.

4 C (CARRY) Flag :

This flag is set to 1 if there is a carry from addition or borrow from subtraction,

otherwise it is cleared.

8. Addressing Modes

The various formats of representing operand in an instruction or location of an operand is called

as “Addressing Mode”. The different types of Addressing Modes are

a) Register Addressing

b) Direct Addressing

c) Immediate Addressing

d) Indirect Addressing

e) Index Addressing

f) Relative Addressing

g) Auto Increment Addressing

h) Auto Decrement Addressing

Computer Organization Module3

a. REGISTER ADDRESSING:
In this mode operands are stored in the registers of CPU. The name of the register is directly

specified in the instruction.
Ex: MOVE R{,R2 Where R1 and R2 are the Source and Destination registers respectively. This

instruction transfers 32 bits of data from R1 register

into R2 register. This instruction does not refer

}_J,_' memory for operands. The operands are directly
available in the registers.

Register Set

Register Direct Addressing Mode

b. DIRECT ADDRESSING
It is also called as Absolute Addressing Mode. In this addressing mode operands are stored in the

memory locations. The name of the memory location is directly specified in the instruction.

Ex: MOVE LOCA, R: : Where LOCA is the memory location and R1 is the Register.

e This instruction transfers 32 bits of data from memory
|—J—l location LOCA into the General Purpose Register R1.

Memory

Direct Addressing Mode

C. IMMEDIATE ADDRESSING
In this Addressing Mode operands are directly specified in the instruction. The source field is used

to represent the operands. The operands are represented by # (hash) sign.

Ex: MOVE #23, RO

Immediate Addressing Mode

Computer Organization Module3

d. INDIRECT ADDRESSING

In this Addressing Mode effective address of an operand is stored in the memory location or
General Purpose Register.

[Effective address (EA) — the actual memory address of the operand]
The memory locations or GPRs are used as the memory pointers.
Memory pointer: It stores the address of the memory location.
There are two types Indirect Addressing

i) Indirect through GPRs
ii) Indirect through memory location

i) Indirect Addressing Mode through GPRs
In this Addressing Mode the effective address of an operand is stored in the one of the General
Purpose Register of the CPU.
Ex: ADD (R1), Ro ;Where Riand Roare GPRS
(R1) — R1 stores the address of a location where operand value is present.

This instruction adds the data from the memory location whose address is stored in Ry, with the
contents of Ro Register and the result is stored in Ro register as shown in the fig.

Ro<+— [[R1]]+ Ro

The diagrammatic representation of this addressing mode is as shown in the fig.

Add (R1),R0
: Main
: [memory [’ _L
B Operand
Register Set Memory
Register Indirect Addressing Mode

RI B Register

Computer Organization Module3

i) Indirect Addressing Mode through Memory Location.
In this Addressing Mode, effective address of an operand is stored in the memory location.

Ex: ADD (A), Ro

This instruction adds the data from the memory location, whose address is stored in ‘A’ memory

location with the contents of Ro and result is stored in Ro register.

Ro «—[[A]] + Ro
The diagrammatic representation of this addressing mode is as shown in the fig.

Add (A)RO
A B
: Memory
Indirect Addressing Mode
B Operand

e. INDEX ADDRESSING MODE
In this addressing mode, the effective address of an operand is computed by adding constant
value with the contents of Index Register. Any one of the General Purpose Register namely Ro to

Rn-1can be used as the Index Register. The constant value is directly specified in the instruction.

The symbolic representations of this mode are as follows

1. X (Ri) where X is the Constant value and R; is the GPR.
It can be represented as
Effective Address (EA) of an operand = X + (Rj)
Eg: Add 5(R2) , R3
Effective Address(EA) of first operand =5 + [R2].
2. (Ri, R;) Where Ri and Rjare the General Purpose Registers used to store addresses of an
operand and constant value respectively. It can be represented as

The EA of an operand is given by EA = (Ri) + (R))

Computer Organization Module3

3. X(Ri, Rj) Where X is the constant value and Ryand R; are the General Purpose Registers
used to store the addresses of the operands.It can be represented as

The EA of an operand is given by

EA=(Ri) + (R) + X

Eg: Add 5(R1)(R2) , R3

EA of first operand is [R1]+[R2]+5

There are two types of Index Addressing Modes

i) Offset is given as constant.
ii) Offsetis in Index Register.

Note : Offset : It is the difference between the starting effective address of the memory location

and the effective address of the operand fetched from memory.
i) Offset is given as constant

Ex: ADD 20(Ri), R.
The EA of an operand is given by
EA =20 + [Ryq]

This instruction adds the contents of memory location whose EA is the sum of contents of R;
with 20 and with the contents of R2 and result is placed in R register. The diagrammatic

representation of this mode is as shown in the fig.

Add 20(RI1),R2
—I— 1000 1000 Rl
20 = offset
—l—— 1020 Operand

Computer Organization Module3

i) Offset is in Index Register

Ex: ADD 1000(R1) , Rz R1holds the offset address of an operand.
The EA of an operand is given by

EA =1000 + [R1]

This instruction adds the data from the memory location whose address is given by [1000 +
[R1] with the contents of Rz and result is placed in Rz register.

The diagrammatic representation of this mode is as shown in the fig.

Add 1000(R1),R2

Rl

—I-— 1000 20
20 = offset -

e

f. RELATIVE ADDRESSING MODE:

In this Addressing Mode EA of an operand is computed by the Index Addressing Mode. This
Addressing Mode uses PC (Program Counter) to store the EA of the next instruction instead of

GPR.

The symbolic representation of this mode is X(PC), where X is the offset value and PC is the
Program Counter to store the address of the next instruction to be executed.

EA of operand = X + (PC).
This Addressing Mode is useful to calculate the EA of the target memory location.

Effective Address

= Content of Program Counter + Address part of the instruction

Memory

Relative Addressing Mode

Computer Organization Module3

g. AUTO INCREMENT ADDRESSING MODE

In this Addressing Mode , EA of an operand is stored in the one of the GPRs of the CPU. This
Addressing Mode increment the contents of register, to point to next memory locations after
operand access.
In 32- bit machine, it points to the next memory location, by adding 4 to current location value.

The symbolic representation is

(R)+ Where Rj is the one of the GPR.
Ex: MOVE (R)+ ,R2

This instruction transfer’s data from the memory location whose address is stored in Rz into R

register and then it increments the contents of Rz to point to next address.

Register Set

Memory

Auto-Increment Addressing Mode

h. AUTO DECREMENT ADDRESSING MODE

In this Addressing Mode , EA of an operand is stored in the one of the GPRs of the CPU. This
Addressing Mode decrements the contents of register, to point to previous memory locations after
operand access.

In 32- bit machine, it points to the previous memory location, by subtracting 4 from current
location value.

The symbolic representation is

-(R1) Where R; is the one of the GPR.
Ex: MOVE - (R1) , Rz
This instruction first decrements the contents of R1by 4 memory locations and then transfer’s data

of that location to destination register.

Register Set Memory

Auto-Decrement Addressing Mode

Digital Design and Computer Organization (BSC302) Module-4

MODULE 4
INPUT/OUTPUT ORGANIZATION

There are a number of input/output (1/0) devices, which can be connected to a computer. The input may
be from a keyboard, a sensor, switch, mouse etc. Similarly, output may be a speaker, monitor, printer, a
digital display etc.

These variety of I/O devices exchange information in varied format, having different word length,
transfer speed is different, but are connected to the same system and exchange information with the
same computer. Computer must be capable of handling these wide variety of devices.

ACCESSING I/O-DEVICES

A single bus-structure can be used for connecting I/O-devices to a computer. The simple arrangement
of connecting set of 1/0O devices to memory and processor by means of system bus is as shown in the

figure. Such an arrangement is called as Single Bus Organization.

Processor Memory
- !
IO device 1 e VO device n

e The single bus organization consists of

Memory
Processor
System bus
I/O device

0 O O O

e The system bus consists of 3 types of buses:

Page 1

Digital Design and Computer Organization (BSC302) Module-4

o Address bus (Unidirectional)
o Data bus (Bidirectional)
o Control bus (Bidirectional)

e The system bus enables all the devices connected to it to involve in the data transfer operation.

e The system bus establishes data communication between 1/0 device and processor.

e Each I/O device is assigned a unique set of address.

e When processor places an address on address-lines, the intended-device responds to the
command.

e The processor requests either a read or write-operation.

e The requested data are transferred over the data-lines

Steps for input operation:

e The address bus of system bus holds the address of the input device.

e The control unit of CPU generates IORD Control signal.
e When this control signal is activated the processor reads the data from the input device
(DATAIN) into the CPU register.

Steps for output operation:
e The address bus of system bus holds the address of the output device.

e The control unit of CPU generates IOWR control signal.
e When this control signal is enabled CPU transfers the data from processor register to output

device(DATAOUT)

There are 2 schemes available to connect 1/O devices to CPU
1. Memory mapped I/O:
e In this technique, both memory and I/O devices can share the common memory to store the data,
the 1/O instructions are mapped to any memory location.
e All memory related instructions are used for data transfer between 1/0 and processor.
e In case of memory mapped 1/O input operation can be implemented as,
MOVE DATAIN, RO

Source destination

Page 2

Digital Design and Computer Organization (BSC302) Module-4

This instruction sends the contents of location DATAIN to register RO.

o Similarly output can be implemented as,
MOVE RO, DAT,TOUT

|

Source destination
The data is written from RO to DATAOUT location (address of output buffer)

2. 1/0 Mapped 1/O:
¢ In this technique, a separate address space is allocated for I/0O devices. Address space for

program and 1/O devices are different.

Hence two sets of instruction are used for data transfer.

One set for memory operations and another set for 1/0 operations.

Whole address space is available for the program.
Eg— IN AL, DX

Page 3

Digital Design and Computer Organization (BSC302) Module-4

I/O INTERFACE

The hardware arrangement of connecting i/p device to the system bus is as shown in the fig.

Address lines
Bus e [}ata lines

Conirol lines

b1 P | I

; Address Control Data and ; | 10

i" decoder i circuits status registers % interface

. i i |

[H— : [.

Input device

This hardware arrangement is called as 1/O interface. The I/O interface consists of 3 functional devices
namely:

1) Address Decoder:

o Its function is to decode the address, in-order to recognize the input device whose address is
available on the unidirectional address bus.

o The recognition of input device is done first, and then the control and data registers becomes
active.

o The unidirectional address bus of system bus is connected to input of the address decoder as
shown in figure

2) Control Circuit:
o The control bus of system bus is connected to control circuit as shown in the fig.
o The processor sends commands to the I/O system through the control bus.
o It controls the read write operations with respect to 1/0O device.

3) Status & Data register:

o It specifies type of operation (either read or write operation) to be performed on I/O device. It
specifies the position of operation.

4) Data Register:

Page 4

Digital Design and Computer Organization (BSC302) Module-4

o The data bus carries the data from the 1/O devices to or from the processor. The data bus is
connected to the data/ status register.

o The data register stores the data, read from input device or the data, to be written into output
device. There are 2 types:

DATAIN - Input-buffer associated with keyboard.
DATAOQUT -Output data buffer of a display/printer.

Data buffering is an essential task of an 1/O interface. Data transfer rates of processor and
memory are high, when compared with the 1/0 devices, hence the data are buffered at the 1/0
interface circuit and then forwarded to output device, or forwarded to processor in case of input

devices.
Input Device DATAIN Buffer ——» Processor
Processor DATAOUT Buffer — 5 Output Device

Input & Output registers —

Various registers in keyboard and display devices -

DATAIN

DATAQUT

STATUS DIRQ | KIRQ {SOUT | SIN
CONTROL DEN | KEN

DATAIN register is a part of input device. It is used to store the ASCII characters read from
keyboard.

Page 5

Digital Design and Computer Organization (BSC302) Module-4

DATAOUT register is a part of output device. It is used to store the ASCII characters to be
displayed on the output device.

STATUS register stores the status of working of 1/0 devices —

e SIN flag — This flag is set to 1, when DATAIN buffer contains the data from keyboard.
The flag is set to 0, after the data is passed from DATAIN buffer to the processor.

e SOUT flag — This flag is set to 1, when DATAOUT buffer is empty and the data can be
added to it by processor. The flag is set to 0, when DATAOUT buffer has the data to be
displayed.

e KIRQ (Keyboard Interrupt Request) — By setting this flag to 1, keyboard requests the
processor to obtain its service and an interrupt is sent to the processor. It is used along
with the SIN flag.

o DIRQ(Display Interrupt Request) — The output device request the processor to obtain its
service for output operation, by activating this flag to 1.

Control registers
KEN (keyboard Enable) — Enables the keyboard for input operations.
DEN (Display Enable) — Enables the output device for input operations.

Program Controlled 1/0O

e It is the process of controlling the input and output operations by executing 2 sets of instruction,
one set for input operation and the next set for output operation.

e The program checks the status of 1/O register and reads or displays data. Here the 1/O operation
is controlled by program.

WAITK TestBit #0, STATUS (Checks SIN flag)
Branch = 0 WAITK
Move DATAIN, RO (Read character)

[*Code to read a character from DATAIN to RO]

This code checks the SIN flag, and if it is set to O (ie. If no character in DATAIN Buffer), then
move back to WAITK label. This loop continues until SIN flag is set to 1. When SIN is 1, data is
moved from DATAIN to RO register. Thus the program, continuously checks for input operation.

Similarly code for Output operation,

WAITD TestBit #0, STATUS (Checks SOUT flag)
Branch = 0 WAITD
Move RO, DATAOUT (Send character for display)

Page 6

Digital Design and Computer Organization (BSC302) Module-4

The code checks the SOUT flag, and if it is set to 1 (ie. If no character in DATAOUT Buffer),
then move back to WAITK label. This loop continues until SOUT flag is set to 0. When SOUT is
0, data is moved from RO register to DATAOUT (ie. Sent by processor).

Interrupt

e |t is an event which suspends the execution of one program and begins the execution of another
program.

e In program controlled 1/O, a program should continuously check whether the 1/O device is free.
By this continuous checking the processor execution time is wasted. It can be avoided by 1/O
device sending an ‘interrupt’ to the processor, when 1/O device is free.

e The interrupt invokes a subroutine called Interrupt Service Routine (ISR), which resolves the
cause of interrupt.

e The occurrence of interrupt causes the processor to transfer the execution control from user
program to ISR.

_Programl ISR___. -
1 —‘
2
Interrupt
OCCUTS =t |
here
i+ -—
:]
M l

The following steps takes place when the interrupt related instruction is executed:

e After the execution of current instruction i.

e Transfer the execution control to sub program from main program.

e Increments the content of PC by 4 memory location.

e It decrements SP by 4 memory locations.

e Pushes the contents of PC into the stack segment memory whose address is stored in SP.

e It loads PC with the address of the first instruction of the sub program.

Page 7

Digital Design and Computer Organization (BSC302) Module-4

The following steps takes place when ‘return’ instruction is executed in ISR -
e |t transfers the execution control from ISR to user program.
e It retrieves the content of stack memory location whose address is stored in SP into the PC.
e After retrieving the return address from stack memory location into the PC it increments the

Content of SP by 4 memory location.

Interrupt Latency / interrupt response time is the delay between the time taken for receiving an

interrupt request and start of the execution of the ISR.Generally, the long interrupt latency in unacceptable.

INTERRUPT HARDWARE
e The external device (1/0 device) sends interrupt request to the processor by activating a bus line

and called as interrupt request line.

e All I/O device uses the same single interrupt-request line.

e One end of this interrupt request line is connected to input power supply by means of a register.

e The another end of interrupt request line is connected to INTR (Interrupt request) signal of
processor as shown in the fig.

Vau
Processor

INTR

mm1 INTR2 s INTRn
L

e The I/O device is connected to interrupt request line by means of switch, which is grounded as
shown in the fig.

e When all the switches are open the voltage drop on interrupt request line is equal to the Vop and
INTR value at process is 0.

e This state is called as in-active state of the interrupt request line.

Page 8

Digital Design and Computer Organization (BSC302) Module-4

e The I/O device interrupts the processor by closing its switch.

e When switch is closed the voltage drop on the interrupt request line is found to be zero, as the
switch is grounded, hence INTR=0 and INTR=1.

e The signal on the interrupt request line is logical OR of requests from the several 1/O devices.
Therefore, INTR=INTR1 + INTR2 +............. + INTRn

ENABLING AND DISABLING THE INTERRUPTS

The arrival of interrupt request from external devices or from within a process, causes the suspension of
on-going execution and start the execution of another program.

e Interrupt arrives at any time and it alters the sequence of execution. Hence the interrupt to be
executed must be selected carefully.
e All computers can enable and disable interruptions as desired.

e When an interrupt is under execution, other interrupts should not be invoked. This is performed
in a system in different ways.
e The problem of infinite loop occurs due to successive interruptions of active INTR signals.
e There are 3 mechanisms to solve problem of infinite loop:
1) Processor should ignore the interrupts until execution of first instruction of the ISR.
2) Processor should automatically disable interrupts before starting the execution of the ISR.
3) Processor has a special INTR line for which the interrupt-handling circuit.
Interrupt-circuit responds only to leading edge of signal. Such line is called edge-
triggered.
« Sequence of events involved in handling an interrupt-request:
1) The device raises an interrupt-request.
2) The processor interrupts the program currently being executed.
3) Interrupts are disabled by changing the control bits in the processor status register (PS).
4) The device is informed that its request has been recognized.
In response, the device deactivates the interrupt-request signal.
5) The action requested by the interrupt is performed by the interrupt-service routine.

6) Interrupts are enabled and execution of the interrupted program is resumed.

Page 9

Digital Design and Computer Organization (BSC302) Module-4

HANDLING MULTIPLE DEVICES
While handling multiple devices, the issues concerned are:
e How can the processor recognize the device requesting an interrupt?
e How can the processor obtain the starting address of the appropriate ISR?
e Should a device be allowed to interrupt the processor while another interrupt is
being serviced?
e How should 2 or more simultaneous interrupt-requests be handled?

VECTORED INTERRUPT
« A device requesting an interrupt identifies itself by sending a special-code to processor over bus.

« Then, the processor starts executing the ISR.
« The special-code indicates starting-address of ISR.
« The special-code length ranges from 4 to 8 bits.
« The location pointed to by the interrupting-device is used to store the staring address to ISR.
e The staring address to ISR is called the interrupt vector.
« Processor
— loads interrupt-vector into PC &
— executes appropriate ISR.
» When processor is ready to receive interrupt-vector code, it activates INTA line.
« Then, 1/0-device responds by sending its interrupt-vector code & turning off the INTR signal.

The interrupt vector also includes a new value for the Processor Status Register

INTERRUPT NESTING
o A multiple-priority scheme is implemented by using separate INTR & INTA lines for each device

e Each INTR line is assigned a different priority-level as shown in Figure.

Page 10

Digital Design and Computer Organization (BSC302) Module-4

- INTR | INTRp
E il Device | Device 2 I EE Device p
' A
INTAI INTAp

Priority arbitration
circuil

« Priority-level of processor is the priority of program that is currently being executed.
« Processor accepts interrupts only from devices that have higher-priority than its own.
« At the time of execution of ISR for some device, priority of processor is raised to that of the device.
« Thus, interrupts from devices at the same level of priority or lower are disabled.
Privileged Instruction
e Processor's priority is encoded in a few bits of PS word. (PS = Processor-Status).
» Encoded-bits can be changed by Privileged Instructions that write into PS.
« Privileged-instructions can be executed only while processor is running in Supervisor Mode.
e Processor is in supervisor-mode only when executing operating-system routines.
Privileged Exception
o User program cannot
— accidently or intentionally change the priority of the processor &
— disrupt the system-operation.
» An attempt to execute a privileged-instruction while in user-mode leads to a Privileged Exception.

SIMUL TANEOUS REQUESTS
DAISY CHAIN

« The daisy chain with multiple priority levels is as shown in the figure.

INTR

Page 11

Digital Design and Computer Organization (BSC302)

Module-4

e The interrupt request line INTR is common to all devices as shown in the fig.

e The interrupt acknowledge line is connected in a daisy fashion as shown in the figure.

e This signal propagates serially from one device to another device.

e The several devices raise an interrupt by activating INTR signal. In response to the signal,

processortransfers its device by activating INTA signal.

e This signal is received by device 1. The device-1 blocks the propagation of INTA signal to

device-2,when it needs processor service.

e The device-1 transfers the INTA signal to next device when it does not require the processor service.

e In daisy chain arrangement device-1 has the highest priority.

e Advantage: It requires fewer wires than the individual connections.

ARRANGEMENT OF PRIORITY GROUP

INTRI
ey
-~
| e = Device Device
= i INTAI
i : .
INTRp . .
|
: : ——brbevioc Device
INTAp
Priority arbitration
circuit

« In this technique, devices are organizes in a group and each group is connected to the processor at a

different priority level.

« Within a group device are connected in a daisy chain fashion as shown in the figure.

Direct Memory Access (DMA)

Page 12

Digital Design and Computer Organization (BSC302) Module-4

e Direct Memory Access is the process of transferring the block of data at high speed in between main
memory and external device (I/O devices) without continuous intervention of CPU.

e This operation is performed by the control circuit, called as DMA controller.

e DMA controller is a part of the 1/O interface.

e The data transfer operation in DMA is processed by the help of DMA controller.

e To initiate Directed data transfer between main memory and external devices DMA controller needs
parameters from the CPU.

e These 3 Parameters are:

1) Starting address of the memory block.

2) No of words to be transferred.

3) Type of operation (Read or Write).
After receiving these 3 parameters from CPU, DMA controller establishes directed data transfer
operation between main memory and external devices without the involvement of CPU. Hence the
processor is free to execute other programs.

Register of DMA Controller:
It consists of 3 type of register:

Starting address register:
The format of starting address register is as shown in the fig. It is used to store the starting address of
the memory block.

Starting address

Word-Count register:
The format of word count register is as shown in fig. It is used to store the no of words to be transferred
from main memory to external devices and vice versa.

Word count

Status and Controller register:
The format of status and controller register is as shown in fig.

31 30 1 0

Status and control

| Lo

Page 13

Digital Design and Computer Organization (BSC302) Module-4

a) DONE bit:
e The DMA controller sets this bit to 1 when it completes the direct data transfer between main
memory and external devices.
e This information is informed to CPU by means of DONE bit.

b)R/W (Read or Write):

e This bit is used to differentiate between memory read and memory write operation. It is set
by a program instruction.

e The R/W = 1 for read operation and

= 0 for write operation.

e When this bit is set to 1, DMA controller performs read operation and transfers one block of
data from main memory to external device.

e When this bit is set to 0, DMA controller performs write operation and transfers one block of
data from external device to main memory.

¢) IE (Interrupt enable) bit:
e The DMA controller enables the interrupt enable bit after the completion of DMA operation

d)Interrupt request (IRQ):

e The DMA controller requests the CPU for permission and data, to transfer new block of data
from source to destination by activating this bit.

The computer with DMA controller is as shown in the fig.:

Page 14

Digital Design and Computer Organization (BSC302) Module-4

Mai
Processor "
memory
System bus
Disk/DMA 1 DMA .

i controller controller. Printer Keyboard
i
Disk Disk Network

Interface

~_

e In the sample architecture shown above, the DMA controller connects two external devices
namely disk 1 and disk 2 to system bus.
e The DMA controller also interconnects high speed network devices to system bus as shown
in the above fig.
e Let us consider direct data transfer operation by means of DMA controller without the
involvement of CPU in between main memory and disk 1.
e To establish direct data transfer operation between main memory and disk 1. DMA controller
request the processor to obtain 3 parameters namely:
1) Starting address of the memory block.
2) No of words to be transferred.
3) Type of operation (Read or Write).

e After receiving these 3 parameters from processor, DMA controller directly transfers block of
data between main memory and external devices (disk 1) depending on the operation.

e This information is informed to CPU by setting respective bits in the status and controller
register of DMA controller.
These are 2 types of request with respect to system bus
1). CPU request.
2). DMA request.
Highest priority will be given to DMA request.

e Actually the CPU generates memory cycles to perform read and write operations.
The DMA controller steals memory cycles from the CPU to perform read and write
operations. This approach is called as “Cycle stealing”.

Page 15

Digital Design and Computer Organization (BSC302) Module-4

e An exclusive option will be given for DMA controller to transfer block of data between external
devices and main memory. Only after the transfer of whole block, signal is sent to the processor.
This technique is called as “Burst mode of operation.”

e Conflict may arise, if CPU and multiple DMA controllers, request for bus, at the same time. This
is resolved by bus arbitration.

BUS ARBITRATION
e Any device which initiates data transfer operation on bus at any instant of time is called as Bus-
Master.
e When the bus mastership is transferred from one device to another device, the next device is
ready to obtain the bus mastership.
e The bus-mastership is transferred from one device to another device based on the principle of
priority system. There are two types of bus-arbitration technique:

a)Centralized bus arbitration:

In this technique CPU acts as a bus-master or any control unit connected to bus can be acts as a bus
master.

BBSY
- -
i N !
BR
- i }
Processor 1 F
DMA DMA
p———awi controller $~————=i coniroller -——
BGI 1 BG2 2

The schematic diagram of centralized bus arbitration is as shown in the fig.:

The following steps are necessary to transfer the bus mastership from CPU to one of the DMA
controller:
e The DMA controller request the processor to obtain the bus mastership by activating BR (Bus
request) signal
e In response to this signal the CPU transfers the bus mastership to requested devices DMA
controllerl in the form of BG (Bus grant).
¢ \WWhen the bus mastership is obtained from CPU the DMA controllerl blocks the propagation of bus
grant signal from one device to another device.
e The BG signal is connected to DMA controller2 from DMA controllerl, and so on as in daisy
fashion style as shown in the figure.
e When the DMA controllerl has not sent BR request, it transfers the bus mastership to DMA
controller2 by unblocking bus grant signal.

Page 16

Digital Design and Computer Organization (BSC302) Module-4

e When the DMA controllerl receives the bus grant signal, it blocks the signal from passing to DMA
controller2 and enables BBSY signal. When BBSY signal is set to 1 the set of devices connected to
system bus doesn’t have any rights to obtain the bus mastership from the CPU.

b)Distributed bus arbitration:
e In this technique 2 or more devices trying to access system bus at the same time may participate

in bus arbitration process.
e The schematic diagram of distributed bus arbitration is as shown in the figure:

3

<>

LA LA Y

>
=
ve]
w

>
~
=
¥

;

>
)
==}
o

Interface circuit ¢
for device A

e The external device requests the processor to obtain bus mastership by enabling start arbitration
signal.

¢ In this technique 4 bit code is assigned to each device to request the CPU in order to obtain bus
mastership.

e Two or more devices request the bus by placing 4 bit code over the system bus.

e The signals on the bus interpret the 4 bit code and produces winner as a result from the CPU.

e When the input to the one driver = 1, and input to the another driver = 0, on the same bus line,
this state is called as “Low level voltage state of bus”.

e Consider 2 devices namely A & B trying to access bus mastership at the same time.

Let assigned code for devices A & B are 5 (0101) & 6 (0110) respectively.

e The device A sends the pattern (0101) and device B sends its pattern (0110) to master. The
signals on the system bus interpret the 4 bit code for devices A & B produces device B as a
winner.

e The device B can obtain the bus mastership to initiate direct data transfer between external
devices and main memory.

Page 17

Digital Design and Computer Organization (BSC302) Module-4

SPEED, SIZE COST

Characteristics SEAM DEAM Magsnetis Disk
Speed WVery Fast Slonwwrer Much slower than
DEAM

Size Large Small Small

Cost Expensive Less Expensive Low price

Memorv Speed Size Cost

Registers Very high Lower Verv Lower

Primarv cache High Lower Lowr

Secondary cache Low Lowr Lowr

Main memory Lower than High High
Seconadry cache

Secondary Very low Very High Veryv High

Memory

» The main-memory can be built with DRAM (Figure 8.14)

e Thus, SRAM*s are used in smaller units where speed is of essence.

» The Cache-memory is of 2 types:

1) Primary/Processor Cache (Levell or L1 cache)

> Itis always located on the processor-chip.

2) Secondary Cache (Level2 or L2 cache)

> Itis placed between the primary-cache and the rest of the memory.

e The memory is implemented using the dynamic components (SIMM, RIMM, DIMM).

» The access time for main-memory is about 10 times longer than the access time for L1 cache.

Page 18

Digital Design and Computer Organization (BSC302) Module-4

Processor

Registers

Increasink Increasing Increasing
size : speed — cost per bit
Primary L1 \ A
cache
]

!

Secondary 14
cache L2

L

Y

Main
memory

E

Y

\ Magnetic disk
secondary
memory

Figure 8.14 Memory hierarchy.

CACHE MEMORIES

» The effectiveness of cache mechanism is based on the property of ‘Locality of Reference’.

Locality of Reference

» Many instructions in the localized areas of program are executed repeatedly during some time period
» Remainder of the program is accessed relatively infrequently (Figure 8.15).

e There are 2 types:

1) Temporal

> The recently executed instructions are likely to be executed again very soon.

2) Spatial

> Instructions in close proximity to recently executed instruction are also likely to be executed soon.
« If active segment of program is placed in cache-memory, then total execution time can be reduced.
« Block refers to the set of contiguous address locations of some size.

e The cache-line is used to refer to the cache-block.

Page 19

Digital Design and Computer Organization (BSC302) Module-4

Main
memory

Processor |- i (Cache |= -

Figure 8.15 Use of a cache memory.
« The Cache-memory stores a reasofianie numoer or DIOCKS at a given ume.

« This number of blocks is small compared to the total number of blocks available in main-memory.

« Correspondence b/w main-memory-block & cache-memory-block is specified by mapping-function.
« Cache control hardware decides which block should be removed to create space for the new block.

« The collection of rule for making this decision is called the Replacement Algorithm.

» The cache control-circuit determines whether the requested-word currently exists in the cache.

 The write-operation is done in 2 ways: 1) Write-through protocol & 2) Write-back protocol.

Write-Through Protocol

> Here the cache-location and the main-memory-locations are updated simultaneously.

Write-Back Protocol

> This technique is to
— update only the cache-location &

— mark the cache-location with associated flag bit called Dirty/Modified Bit.

> The word in memory will be updated later, when the marked-block is removed from cache.

During Read-operation

« If the requested-word currently not exists in the cache, then read-miss will occur.

» To overcome the read miss, Load-through/Early restart protocol is used.
Load-Through Protocol

> The block of words that contains the requested-word is copied from the memory into cache.

> After entire block is loaded into cache, the requested-word is forwarded to processor.

During Write-operation

« If the requested-word not exists in the cache, then write-miss will occur.

1) If Write Through Protocol is used, the information is written directly into main-memory.

2) If Write Back Protocol is used,
— then block containing the addressed word is first brought into the cache &

Page 20

Digital Design and Computer Organization (BSC302) Module-4

— then the desired word in the cache is over-written with the new information.

MAPPING FUNCTIONS

« Here we discuss about 3 different mapping-function:
1) Direct Mapping
2) Associative Mapping
3) Set-Associative Mapping

DIRECT MAPPING

 The block-j of the main-memory maps onto block-j modulo-128 of the cache (Figure 8.16).

» When the memory-blocks 0, 128, & 256 are loaded into cache, the block is stored in cache-block 0.
Similarly, memory-blocks 1, 129, 257 are stored in cache-block 1.

 The contention may arise when
1) When the cache is full.
2) When more than one memory-block is mapped onto a given cache-block position.

e The contention is resolved by allowing the new blocks to overwrite the currently resident-block.

» Memory-address determines placement of block in the cache.

Main
memory

] Block O _

Block 1

A B2
Block 127

Block 128
< | Block 129

B A
Bz W™ Siock 127

Block 256

Block 257
8 e »

Block 4095
Block Word

I 7 I 4 I Main memory address
Fiqure 8.16 Direct-mapped cache.

" ;!
gl

Page 21

Digital Design and Computer Organization (BSC302) Module-4

e The memory-address is divided into 3 fields:

1) Low Order 4 bit field

> Selects one of 16 words in a block.

2) 7 bit cache-block field

> 7-bits determine the cache-position in which new block must be stored.

3) 5 bit Tag field

» 5-bits memory-address of block is stored in 5 tag-bits associated with cache-location.

> As execution proceeds, 5-bit tag field of memory-address is compared with tag-bits associated with
cache-location. If they match, then the desired word is in that block of the cache. Otherwise, the block
containing required word must be first read from the memory. And then the word must be loaded into
the cache.

ASSOCIATIVE MAPPING

» The memory-block can be placed into any cache-block position. (Figure 8.17).

» 12 tag-bits will identify a memory-block when it is resolved in the cache.

» Tag-bits of an address received from processor are compared to the tag-bits of each block of cache.

« This comparison is done to see if the desired block is present.

22

Digital Design and Computer Organization (BSC302) Module-4

Main
memory

Block 0

Block |

Cache

la
I g Block 0 > >~
o -

I e Block 1

>~ -
. -

[a
£ Block 127

=3
- "2
Block 4095
Tag Word
12 4 I Main memory address

Figure 8.17 Associative-mapped cache.

« It gives complete freedom in choosing the cache-location.

» A new block that has to be brought into the cache has to replace an existing block if the cache isfull.
» The memory has to determine whether a given block is in the cache.

» Advantage: It is more flexible than direct mapping technique.

« Disadvantage: Its cost is high.

SET-ASSOCIATIVE MAPPING

e It is the combination of direct and associative mapping. (Figure 8.18).

« The blocks of the cache are grouped into sets.
» The mapping allows a block of the main-memory to reside in any block of the specified set.
» The cache has 2 blocks per set, so the memory-blocks 0, 64, 128...4032 maps into cache set ,,0".

« The cache can occupy either of the two block position within the set.

23

Digital Design and Computer Organization (BSC302) Module-4

6 bit set field

> Determines which set of cache contains the desired block.

6 bit taqg field

> The tag field of the address is compared to the tags of the two blocks of the set.

> This comparison is done to check if the desired block is present.

Main memory

' Block 0

Block 1
1 1
y |
Block 63
Block 65
Block 3] I 1
: x Block 127
I lag Block 128 |
Set 63 — Block 126 ~ -
1 Block 129
38 Block 127
1 1
L 1
I Block 4095 I
Tag Set Word
6 6 | 4 | Main memory address

Figure 8.18 Set-associative-mapped cache with two blocks per set.

 The cache which contains 1 block per set is called direct mapping. A cache that has ,.k* blocks per set is
called as“k-way set associative cache®.

e Each block contains a control-bit called a valid-bit.
o The Valid-bit indicates that whether the block contains valid-data.
« The dirty bit indicates that whether the block has been modified during its cache residency.

Valid-bit=0 - When power is initially applied to system.
Valid-bit=1 - When the block is loaded from main-memory at first time.

24

Digital Design and Computer Organization (BSC302) Module-4

« If the main-memory-block is updated by a source & if the block in the source is already exists in
the cache, then the valid-bit will be cleared to “0.

« If Processor & DMA uses the same copies of data then it is called as Cache Coherence Problem.

« Advantages:

1) Contention problem of direct mapping is solved by having few choices for block placement.

2) The hardware cost is decreased by reducing the size of associative search.

REPLACEMENT ALGORITHM

e In direct mapping method, the position of each block is pre-determined and there is no need of
replacement strategy.

e In associative & set associative method, the block position is not pre-determined. If the cache is full and if
new blocks are brought into the cache, then the cache-controller must decide which of the old blocks has
to be replaced.

e When a block is to be overwritten, the block with longest time w/o being referenced is over-written.
e This block is called Least recently Used (LRU) block & the technique is called LRU algorithm.

e The cache-controller tracks the references to all blocks with the help of block-counter.

e Advantage: Performance of LRU is improved by randomness in deciding which block is to be
over- written.

Eg:
Consider 4 blocks/set in set associative cache.

> 2 bit counter can be used for each block.
> When a ‘hit’ occurs, then block counter=0; The counter with values originally lower than
the referenced one are incremented by 1 & all others remain unchanged.

> When a ‘miss’ occurs & if the set is full, the blocks with the counter value 3 is removed, the
newblock is put in its place & its counter is set to “0* and other block counters are incremented
by 1.

25

BCS302- DDCO-VTU 2022 scheme

MODULE-5 BASIC PROCESSING UNIT

5.1 Some Fundamental Concepts

To execute an instruction, processor has to perform following 3 steps:

1) Fetch contents of memory-location pointed to by PC. Content of this location is an instruction
to be executed. The instructions are loaded into IR, Symbolically, this operation can be written as
IR<[[PC]]

2) Increment PC by 4 P,& [PC] +4
3) Carry out the actions specified by instruction (in the IR).
The first 2 steps are referred to as fetch phase; Step 3 is referred to as execution phase.

The operations specified by an instruction can be carried out by performing one or more
of the following actions:

1.Read the content of a given memory-location and load them into a register.
2.Read data from one or more register

3.Perform ALU operations and place the result into the register.

4.Store data from a register into a given memory location.

Figure 5.1 shows the single bus organization. ALU and all the registers are
interconnected via a single common bus. Data and address line of the external memory bus is
connected to the internal processor bus via MDR and MAR respectively(MDR-Memory Data
Register and MAR-Memory Address Register).

MDR has 2 inputs and 2 outputs. Data may be loaded
— into MDR either from memory-bus (external) or
— from processor-bus (internal).

MAR’s input is connected to internal-bus, and MAR"s output is connected to external-
bus.Instruction-decoder & control-unit is responsible for

— issuing the signals that control the operation of all the units inside the processor (and
for interacting with memory bus).

— implementing the actions specified by the instruction (loaded in the IR)
Registers RO through R(n-1) are provided for general purpose use by programmer.

Three registers Y, Z & TEMP are used by processor for temporary storage during
execution of some instructions.

These are transparent to the programmer i.e. programmer need not be concerned with
them because they are never referenced explicitly by any instruction.

MUX(Multiplexer) selects either
— output of Y or

— constant-value 4(is used to increment PC content).This is provided as input A
of ALU.

B input of ALU is obtained directly from processor-bus.

As instruction execution progresses, data are transferred from one register to another,
often passing through ALU to perform arithmetic or logic operation.

An instruction can be executed by performing one or more of the following operations:
1) Transfer a word of data from one processor-register to another or to the ALU.
2) Perform arithmetic or a logic operation and store the result in a processor-register.

3) Fetch the contents of a given memory-location and load them into a processor-
register.

4) Store a word of data from a processor-register into a given memory-location.

Internal processor
bus

A Control signals
= ’]
Instruction
Aﬁ""“ decoder and
ResS
- MAR control logic
Memory
bas
-l MDR
Dats
Tines R
Y
Constant 4 RO
Select MUX
B
ALU R(n-1)
~onirol
lines
Curry-in
TEMP
z .
‘V’

Figure 5.1: Single bus organization of the data path inside a processor
Disadvantage: Only one data word can be transferred over the bus in a clock cycle.

Solution: Providing multiple data-paths allows several data transfer to take place in parallel.

5.1.1 Reaqister Transfers

Instruction execution involves a sequence of steps in which data are transferred from one
register to another.

Input & output of register R; is connected to bus via switches controlled by 2 control-
signals: Rii, & Rigy. These are called gating signals.

When Rii,=1, data on bus is loaded into R; Similarly, when Riq=1, content of R; is
placed on bus. When Riq.,=0, bus can be used for transferring data from other registers.

For example, MOVE R1,R2
This transfers the content of register R1 to R2. This can be accomplished as follows.
1. Enable the output of Register R1 by setting R1,,; to 1.
2. Enable the input of Register R2 by setting R2;, to 1.

All operations and data transfers within the processor take place within time-periods
defined by the processor clock. When edge-triggered flip-flops are not used, 2 or more clock-
signals may be needed to guarantee proper transfer of data. This is known as multiphase
clocking.

Input & Output Gating for one Register Bit

A 2-input multiplexer is used to select the data applied to the input of an edge-triggered D
flip-flop. When Rij,=1, mux selects data on bus. This data will be loaded into flip-flop at rising-
edge of clock. When Rii»=0, mux feeds back the value currently stored in flip-flop. Q output of
flip-flop is connected to bus via a tri-state gate. When Riq,=0, gate's output is in the high-
impedance state. (This corresponds to the open circuit state of a switch). When Riq=1, the gate
drives the bus to 0 or 1, depending on the value of Q.

@
>3 |

Selem

Figure 5.2: Input and output gating for a register

B

‘— Rl

Rlin Clck

Figure 5.3: Input and output gating for one-bit register

5.1.2 Performing ALU operations

The ALU performs arithmetic operations on the 2 operands applied to its A and B inputs. One of
the operands is output of MUX & the other operand is obtained directly from bus. The result
(produced by the ALU) is stored temporarily in register Z.

Eg: Add R1,R2,R3

The sequence of operations for [R3]<[R1]+[R2] is as follows

1) Rlout, Yin [Itransfer the contents of R1 to Y register

2) R2uut, Select Y, Add, Zi, //R2 contents are transferred directly to B input of ALU.
/I The numbers of added. Sum stored in register Z

3) Zout, R3in //sum is transferred to register R3

The signals are activated for the duration of the clock cycle corresponding to that step. All other
signals are inactive.

Constant 4

Figure 5.4: ALU operation

(Note: In this Figure 5.4 , replace Register Ri with Registers R1, R2, R3)

1.3 Fetching a word from Memory

To fetch instruction/data from memory, processor transfers required address to MAR
(whose output is connected to address-lines of memory-bus). At the same time, processor issues
Read signal on control-lines of memory-bus. When requested-data are received from memory,
they are stored in MDR. From MDR, they are transferred to other registers.

The response time of each memory access varies. For this MFC (Memory Function
Completed): is used. It is the signal sent from Addressed-device to the processor. MFC informs
the processor that the requested operation is completed by addressed device.

Thus MFC is set to 1 to indicate that the contents of the specified location
— have been read &
— are available on data-lines of memory-bus

Consider the instruction Move (R1),R2. The sequence of steps is:

1) R1,ut, MARi,, Read :desired address is loaded into MAR & Read command is
issued

2) MDRjg, WMFC :load MDR from memory bus & Wait for MFC response
from memory.

3) MDRyy:, R2in ;load R2 from MDR where WMFC=control signal that

causes processor's control circuitry to wait for arrival of MFC signal

\izmy -bus hTm
":" A
MDR
i o
AV V4

Figure 5.5:Connection and control signal for Register MDR

——

MDR

5 £
| . __L_

MDRy;

|
| i
| L

Figure 5.6: Timing of a memory Read operation

5.1.4 Storing aword in memory

Consider the instruction Move R2,(R1). This requires the following sequence:
1) Rlout, MARIN ;desired address is loaded into MAR
2) R2out, MDRin, Write ;data to be written are loaded into MDR & Write command is issued

3) MDRoutE, WMFC ;load data into memory location pointed by R1 from MDR

5.2. Execution of a Complete Instruction.

Consider the instruction Add (R3),R1 which adds the contents of a memory-location
pointed by R3 to register R1. Executing this instruction requires the following actions:

1) Fetch the instruction.

2) Fetch the first operand.

3) Perform the addition.

4) Load the result into R1.

Control sequence for execution of this instruction is as follows
1) PCout, MARi,, Read, Select4, Add, Zi,

2) Zout, PCin, Yin, WMFC

3) MDRgy, IR,

4) R3out, MAR),, Read

5) Rlou, Yin, WMFC

6) MDRy, SelectY, Add, Zi,

7) Zout, R1in, End

Instruction execution proceeds as follows:

Stepl-> The instruction-fetch operation is initiated by loading contents of PC into MAR &
sending a Read request to memory. The Select signal is set to Select4, which causes the Mux to
select constant 4. This value is added to operand at input B (PC*s content), and the result is
stored in Z

Step2-> Updated value in Z is moved to PC.

Step3-> Fetched instruction is moved into MDR and then to IR.

Step4—> Contents of R3 are loaded into MAR & a memory read signal is issued.

Step5-> Contents of R1 are transferred to Y to prepare for addition.

Step6—> When Read operation is completed, memory-operand is available in MDR, and the

addition is performed.

Step7-> Sum is stored in Z, then transferred to R1.The End signal causes a new instruction

fetch cycle to begin by returning to stepl.

BRANCHING INSTRUCTIONS
Control sequence for an unconditional branch instruction is as follows:
1) PCout, MARIN, Read, Select4, Add, Zin
2) Zout, PCin, Yin, WMFC
3) MDRout, IRin
4) Offset-field-of-1Rout, Add, Zin
5) Zout, PCin, End
The processing starts, as usual, the fetch phase ends in step3.

In step 4, the offset-value is extracted from IR by instruction-decoding circuit. Since the
updated value of PC is already available in register Y, the offset X is gated onto the bus, and an
addition operation is performed.

In step 5, the result, which is the branch-address, is loaded into the PC. The offset X used
in a branch instruction is usually the difference between the branch target-address and the
address immediately following the branch instruction. (For example, if the branch instruction is
at location 1000 and branch target-address is 1200, then the value of X must be 196, since the PC
will be containing the address 1004 after fetching the instruction at location 1000).

In case of conditional branch, we need to check the status of the condition-codes before
loading a new value into the PC.

e.g.: Offset-field-of-1Rout, Add, Zin,
If N=0 then End If N=0, processor returns to step 1 immediately after step 4.

If N=1, step 5 is performed to load a new value into PC

5.3 Pipelining:

The speed of execution of programs is influenced by many factors.

1. One way to improve performance is to use faster circuit technology to implement
the processor and the main memory.

2. Another possibility is to arrange the hardware so that more than one operation can
be performed at the same time. In this way, the number of operations performed

per second is increased, even though the time needed to perform any one
operation is not changed.

Pipelining is a particularly effective way of organizing concurrent activity in a computer
system. Consider how the idea of pipelining can be used in a computer. The processor executes a
program by fetching and executing instructions, one after the other.

Let Fi and Ei refer to the fetch and execute steps for instruction li. Execution of a
program consists of a sequence of fetch and execute steps, as shown in Figure 5.7

— lime

Figure 5.7 Sequential execution

.Now consider a computer that has two separate hardware units, one for fetching
instructions and another for executing them, as shown in Figure 5.8.

Interstage bufter

Bl

Liion > Execution
fewh
unit

Figure 5.8 Hardware organization

—_— e
Clock cycle !

Instruction

1 b E,

Figure 5.9: Pipelined execution (2 stage)

The instruction fetched by the fetch unit is deposited in an intermediate storage buffer,
B1. This buffer is needed to enable the execution unit to execute the instruction while the fetch
unit is fetching the next instruction. The results of execution are deposited in the destination
location specified by the instruction.

Operation of the computer proceeds as in Figure 5.9. In the first clock cycle, the fetch
unit fetches an instruction 11 (step F1) and stores it in buffer B1 at the end of the clock cycle. In
the second clock cycle, the instruction fetch unit proceeds with the fetch operation for instruction
12 (step F2). Meanwhile, the execution unit performs the operation specified by instruction 11,
which is available to it in buffer B1 (step E1).

By the end of second clock cycle, the execution of instruction I1 is completed and
instruction 12 is available. Instruction 12 is stored in B1,replacing 11,which is no longer needed.
StepE2 is performed by the execution unit during the third clock cycle, while instruction I3 is
being fetched by the fetch unit.

In this manner, both the fetch and execute units are kept busy all the time.

In summary, the fetch and execute units in Figure 5.3 constitute a two-stage pipeline in
which each stage performs one step in processing an instruction. An inter-stage storage buffer,
B1, is needed to hold the information being passed from one stage to the next. New information
is loaded into this buffer at the end of each clock cycle.

The processing of an instruction need not be divided into only two steps. For example, a
pipelined processor may process each instruction in four steps, as follows:

F Fetch: read the instruction from the memory.

D Decode: decode the instruction and fetch the source operand(s).
E Execute: perform the operation specified by the instruction.

W Write: store the result in the destination location.

The sequence of events for this case is shown in Figure 5.10.

— lime
('l\'t.k;'_u.':l.‘ I 2 3 - 5 6

Instruction

b Fy 1) E, W

Figure 5.10: Pipelined execution (4 stage)

Four instructions are in progress at any given time. This means that four distinct
hardware units are needed, as shown in Figure 5.11

Interstage butfers

F: Fetch structior E: Execute W Wme
instruction and feich operation results

B1

Figure 5.11 Hardware organization

These units must be capable of performing their tasks simultaneously and without
interfering with one another. Information is passed from one unit to the next through a storage
buffer. As an instruction progresses through the pipeline, all the information needed by the stages
downstream must be passed along. For example, during clock cycle 4, the information in the
buffers is as follows:

«Buffer B1 holds instruction 13, which was fetched in cycle 3 and is being decoded by
the instruction-decoding unit.

«Buffer B2 holds both the source operands for instruction 12 and the specification of the
operation to be performed. This is the information produced by the decoding hardware in
cycle3.Thebuffer also holds the information needed for the write step of instruction 12 (stepW2).
Even though it is not needed by stage E, this information must be passed on to stage W in the
following clock cycle to enable that stage to perform the required Write operation.

«Buffer B3 holds the results produced by the execution unit and the destination
information for instruction I1.

5.3.1 Role of cache:

Each stage in a pipeline is expected to complete its operation in one clock cycle. Hence,
the clock period should be sufficiently long to complete the task being performed in any stage.

If different units require different amounts of time, the clock period must allow the
longest task to be completed. A unit that completes its task early is idle for the remainder of the
clock period. Hence, pipelining is most effective in improving performance if the tasks being
performed in different stages require about the same amount of time.

In Figure 5.12, the clock cycle has to be equal to or greater than the time needed to
complete a fetch operation. However, the access time of the main memory may be as much as
ten times greater than the time needed to perform basic pipeline stage operations inside the
processor, such as adding two numbers. Thus, if each instruction fetch required access to the
main memory, pipelining would be of little value.

— imc
Clock cycle I 2 3 - 5 6 7

Instruction

Iy Fi 1, k) W

Figure 5.12: Instruction execution (4 stage pipeline)

The use of cache memories solves the memory access problem. In particular, when a
cache is included on the same chip as the processor, access time to the cache is usually the same
as the time needed to perform other basic operations inside the processor.

This makes it possible to divide instruction fetching and processing into steps that are
more or less equal in duration. Each of these steps is performed by a different pipeline stage, and
the clock period is chosen to correspond to the longest one.

5.3.2 Pipeline performance

The pipelined processor in Figure 5.6 completes the processing of one instruction in each
clock cycle, which means that the rate of instruction processing is four times that of sequential
operation. The potential increase in performance resulting from pipelining is proportional to the
number of pipeline stages.

Let us consider an example of, one of the pipeline stages may not be able to complete its

processing task for a given instruction in the time allotted as in Figure 5.13.

Clock cycle I 2 3 | 3 6 7 8)}

Instruction

1, F, D i W

Figure 5.13: Execution unit takes more than one cycle for execution

Here instruction 12 requires three cycles to complete, from cycle 4 through cycle 6. Thus,
in cycles 5 and 6, the Write stage must be told to do nothing, because it has no data to work with.
Meanwhile, the information in buffer B2 must remain intact until the Execute stage has
completed its operation. This means that stage 2 and, in turn, stagel are blocked from accepting
new instructions because the information in B1 cannot be overwritten. Thus, steps D4 and F5
must be postponed.

Pipelined operation in Figure 5.13 is said to have been stalled for two clock cycles.
Normal pipelined operation resumes in cycle 7. Any condition that causes the pipeline to stall is
called a hazard.

There are three types of Hazards:
1. Data hazard
2. Instruction or control hazard

3. Structural hazard

Data hazard

A data hazard is any condition in which either the source or the destination operands of
an instruction are not available at the time expected in the pipeline. As a result some operation
has to be delayed, and the pipeline stalls.

Control hazards or instruction hazards

The pipeline may also be stalled because of a delay in the availability of an instruction.
For example, this may be a result of a miss in the cache, requiring the instruction to be fetched
from the main memory. Such hazards are often called control hazards or instruction hazards.
Figure 5.14 has instruction hazard with it.

Instruction I1 is fetched from the cache in cyclel, and its execution proceeds normally.
However, the fetch operation for instruction 12, which is started in cycle 2,results in a cache
miss. The instruction fetch unit must now suspend any further fetch requests and wait for 12 to
arrive. We assume that instruction 12 is received and loaded into buffer B1 at the end of cycle 5.
The pipeline resumes its normal operation at that point.

1y K D £, W,

1 D W
I I 124 L W
(a) Instruction execution steps in successive clock cycles
— TMC
Clock cyele 1 2 { 7 X)
Stage
F: Fetct ¥ I I i !
D: Decode D) : idle e 12 2
E: Execute E, idle ichie dl -
Wi Write W, i Ws W4

{b) Function performed by each processor stage in successive clock cycles

Figure 5.14 Instruction Hazard

Structural hazard

A third type of hazard that may be encountered in pipelined operation is known as a
structural hazard. This is the situation when two instructions require the use of a given hardware
resource at the same time.

Example: Load X(R1),R2

The memory address, X+[R1], is computed in step E2 in cycle4, then memory access
takes place in cycle5.The operand read from memory is written into register R2 in cycle 6. This
means that the execution step of this instruction takes two clock cycles (cycles 4 and 5). It causes
the pipeline to stall for one cycle, because both instructions 12 and 13 require access to the
register file in cycle 6 which is shown in Figure 5.15.

Clock cycle 1 2 3 R 5 &

Instruction

I Fy D o Wy

Figure 5.15: Structural hazard

Even though the instructions and their data are all available, the pipeline stalled because
one hardware resource, the register file, cannot handle two operations at once. If the register file
had two input ports, that is, if it allowed two simultaneous write operations, the pipeline would
not be stalled. In general, structural hazards are avoided by providing sufficient hardware
resources on the processor chip.

The most common case in which this hazard may arise is in access to memory. One
instruction may need to access memory as part of the Execute or Write stage while another
instruction is being fetched. If instructions and data reside in the same cache unit, only one
instruction can proceed and the other instruction is delayed.

Many processors use separate instruction and data caches to avoid this delay.

An important goal in designing processors is to identify all hazards that may cause the
pipeline to stall and to find ways to minimize their impact.

